Abstract:
Provided is an optical information recording medium employing an In-Groove recording system, and having a preferable recording characteristic with a high modulation degree and low jitter characteristics. The medium is comprised of a circular-disk shaped substrate 2 having a through hole at a center portion thereof and a helical guide groove 3 on one surface thereof; a reflective layer 4 formed on the guide groove 3 of the substrate 2; a recording layer 5 formed on the reflective layer 4 and composed of an organic material including a dye; a protection layer 6 provided on the recording layer 5; and a light-transmissive layer 7 formed on the protection layer 6. The recording layer 5 includes an organic dye which is an azo metal complex compound having a structure represented by (Chemical formula 1) and a functional group represented by (Chemical formula 2).
Abstract:
Disclosed is an optical information recording medium whose recording method is In-Groove recording, wherein such optical information recording medium offers good recording characteristics associated with high modulation degree and low jitter characteristics. This optical information recording medium includes: a disc-shaped substrate 2 having a through hole at the center and a guide groove 3 formed helically on one side; a reflective layer 4 formed on top of the aforementioned guide grooves 3 on the aforementioned substrate 2; a recording layer 5 formed on top of the aforementioned reflective layer 4 and made of an organic substance containing dye; a protective layer 6 formed on top of the aforementioned recording layer 5; and a light transmissive layer 6 formed on top of the aforementioned protective layer 6. The recording layer 5 contains an organic dye having a structure expressed by (Chemical Formula 1) and a functional group expressed by (Chemical Formula 2).
Abstract:
A recordable optical recording medium is provided enabling reliably preventing the deterioration of the recording characteristics, even when stored for a long period of time in an environment of high temperature and humidity. A recordable optical recording medium includes a substrate, and on the substrate, a reflective layer, a recording layer, a protective layer, a light transmission layer in a single layer structure having optical transparency, and a hard coat layer. The recording layer is formed by addition of an additive which functions as reducing agent to an azo metal complex dye having a triazole structure.
Abstract:
A recordable optical recording medium is provided enabling the light transmission layer to be a single layer, the inhibition of peeling of the recording layer even when stored in high-temperature/high-moisture conditions, and the reduction of degradation of the recording/reproduction characteristics. A recordable optical recording medium provided with a substrate, and, on the substrate in the following order, a reflective layer, a recording layer, a protective layer, and a light transmission layer. The optical recording medium has the recording layer formed thereon using an organic dye obtained by adding a highly waterproof, low hydrophilic organic dye to a triazole-based azo metal complex dye.
Abstract:
In a write-once optical information recording medium including a substrate, a groove-shaped track such as a guiding groove, and an optical recording layer containing an organic dye material and disposed on the guiding groove, wherein information is recorded by irradiating a short-wavelength laser beam from a surface of the optical recording layer opposite the substrate, and the information can be reproduced by reading a change in the reflected light of a short-wavelength laser beam after the information recording, an unrecorded portion of the optical recording layer has a lower reflectance than a pit portion formed after recording to a portion of the optical recording layer, the optical recording layer has a refractive index n in the range of about 1.2 to about 2.1 before recording and an extinction coefficient k in the range of about 0.01 to about 0.7 before recording, and n+k is in the range of about 1.4 to about 2.1.
Abstract:
A uniform thin film can be formed simply through coating by using a spin-coating method, and a satisfactory optical property (high refractive index) is obtained by using a dye material (a dye composition containing a mono(aza)methine dye and a basic compound) capable of forming an H-aggregate. The mono(aza)methine dye and the basic compound, which exhibit good solubility, are used as the dye material, and thereby, a solvent that does not corrode a substrate can be employed. Consequently, an optical recording layer composed of a thin film that has formed an H-aggregate is provided, a dye thin film exhibiting a large difference in refractive index between before and after the recording can be used, wherein the decomposition of the dye is an endothermic reaction, and application on a substrate can be performed by a spin-coating method.
Abstract:
Provided is an optical information recording medium employing an In-Groove recording system, and having a preferable recording characteristic with a high modulation degree and low jitter characteristics. The medium is comprised of a circular-disk shaped substrate 2 having a through hole at a center portion thereof and a spiral guide groove 3 on one surface thereof; a reflective layer 4 formed on the guide groove 3 of the substrate 2; a recording layer 5 formed on the reflective layer 4 and composed of an organic material including a dye; a protection layer 6 provided on the recording layer 5; and a light-transmissive layer 6 formed on the protection layer 6. The recording layer 5 includes an organic dye which is an azo metal complex compound having a structure represented by (Chemical formula 1) and a functional group represented by (Chemical formula 2).
Abstract:
An optical information recording medium is provided having a superior jitter property even when an organic substance is used for a recording layer. The optical information recording medium has a substrate having a penetrating hole in a central portion thereof and a spiral pre-groove provided in one surface of the substrate, a reflection layer provided on the surface of the substrate in which the pre-groove is provided, a recording layer which is provided on the reflection layer and which is composed of an organic substance including a dye, and a light transmissive cover layer provided on the recording layer. In the optical information recording medium, the cover layer has an elastic modulus of 40 MPa or less at 25° C. in an interface region facing the recording layer.
Abstract:
An optical information recording medium includes: a substrate having a pre-groove formed thereon; an optical recording layer containing a dye; and a light reflecting layer. The medium has a ratio of a modulation degree at a maximum recording speed to a modulation degree at a minimum recording speed, which is from 1.1 to 1.7.
Abstract:
A low-cost recordable optical recording medium is provided having a single-layered light transmission layer, and a recording layer containing an organic dye, the recordable optical recording medium showing a little asymmetry in the reproduction signal, and being capable of recording/reproducing data with light having a wavelength of 300 nm to 500 nm. A recordable optical recording medium including a substrate on which a reflective layer, a recording layer containing an organic dye, a protective layer, and a single-layered light transmission layer are laminated in the stated order, the recording layer being formed of the organic dye having a decomposition starting temperature of 240° C. or less.