Abstract:
A valve packing assembly for a control valve includes a seal assembly, a loading assembly, and a packing retainer. The seal assembly has a seal component to provide a fluid seal around a valve stem and an anti-extrusion component to substantially prevent extrusion of the seal component about the valve stem. The loading assembly is configured to advantageously provide a predetermined packing stress to the seal assembly that is in the same direction as a process stress applied to the seal assembly by a process fluid, thereby substantially reducing packing friction and packing wear in the control valve assembly.
Abstract:
Methods and apparatus to use vibration data to determine a condition of a process control device are disclosed. An example method includes collecting first vibration data from a first sensor operatively coupled to a process control device during a calibration. The example method further includes calculating an operating threshold of the process control device based on the first vibration data, and determining a condition of the process control device if second vibration data associated with the process control device collected after the calibration exceeds the operating threshold.
Abstract:
A valve packing assembly for a control valve includes a seal assembly, a loading assembly, and a packing retainer. The seal assembly has a seal component to provide a fluid seal around a valve stem and an anti-extrusion component to substantially prevent extrusion of the seal component about the valve stem. The loading assembly is configured to advantageously provide a predetermined packing stress to the seal assembly that is in the same direction as a process stress applied to the seal assembly by a process fluid, thereby substantially reducing packing friction and packing wear in the control valve assembly.
Abstract:
Methods and apparatus for estimating a condition of a seal of a rotary valve are disclosed. An example method includes determining a seal wearing cycle of a flow control member of a rotary valve. The seal wearing cycle includes movement of the flow control member between a first position in contact with a seal and a second position. The example method further includes determining a torque of an actuator operating the flow control member for the seal wearing cycle and estimating a condition of the seal based on the torque.
Abstract:
Methods and apparatus for estimating a condition of a seal of a rotary valve are disclosed. An example method includes determining a seal wearing cycle of a flow control member of a rotary valve. The seal wearing cycle includes movement of the flow control member between a first position in contact with a seal and a second position. The example method further includes determining a torque of an actuator operating the flow control member for the seal wearing cycle and estimating a condition of the seal based on the torque.
Abstract:
A valve packing assembly for a control valve includes a seal assembly, a loading assembly, and a packing retainer. The seal assembly has a seal component to provide a fluid seal around a valve stem and an anti-extrusion component to substantially prevent extrusion of the seal component about the valve stem. The loading assembly is configured to advantageously provide a predetermined packing stress to the seal assembly that is in the same direction as a process stress applied to the seal assembly by a process fluid, thereby substantially reducing packing friction and packing wear in the control valve assembly.
Abstract:
Methods and apparatus to use vibration data to determine a condition of a process control device are disclosed. An example method includes collecting first vibration data from a first sensor operatively coupled to a process control device during a calibration. The example method further includes calculating an operating threshold of the process control device based on the first vibration data, and determining a condition of the process control device if second vibration data associated with the process control device collected after the calibration exceeds the operating threshold.
Abstract:
The rubber compositions described herein have been found to have an exceptionally long life as a spring-biased actuator diaphragm material that maintains its position compressed, e.g., bolted, between opposed flanges, while maintaining excellent compressibility, low temperature flexibility, hydrocarbon resistance, abrasion resistance and mechanical strength. The compositions include a copolymer rubber component; a plasticizer for the copolymer rubber; a vulcanizing agent for the copolymer rubber; a silica filler; and a coupling agent, such as a silane coupling agent, capable of coupling the silica filler to the copolymer rubber.