摘要:
A method for reconstructing an ear canal from optical coherence tomography (OCT) scan data of an ear comprises extracting frame numbers and line numbers of interference intensities corresponding to one or more markers on an OCT scan guide, receiving reference frame numbers and lines numbers for one or more markers, determining a starting position and direction for the OCT ear scan from the ear scan marker frame and line numbers and the reference marker frame and line numbers, for each scan line, finding a pixel number of a maximum interference intensity value, and determining an offset distance of said pixel from said scan guide, and reconstructing a surface of the ear canal from the distance offset data.
摘要:
A method and appertaining system implement the use of manufacturing protocols for hearing aid design such that the ability to build an instrument can be displayed as a numeric parameter based on the partial numerical and metrological contributions of all the essential parameters of the given impression, and a buildability index can be displayed as a 3D virtual image of the proposed shell or preferred shell types. The method utilizes a predefined parameter table comprising parameters to utilize for a buildability determination. The buildability index is computed based on impression shape data, selected shell type, selected number of device options, data obtained from the parameter table, and data obtained from a receiver table, and the buildability index is output to a display of a user interface device or an external system.
摘要:
The physical fit, comfort, and appearance of a hearing instrument that resides in the ear can be improved by providing the shell of the instrument with a textured finish. A variety of textured finishes can be imparted during the fabrication process or applied after fabrication.
摘要:
The physical fit, comfort, and appearance of a hearing instrument that resides in the ear can be improved by providing the shell of the instrument with a textured finish. A variety of textured finishes can be imparted during the fabrication process or applied after fabrication.
摘要:
A method for reconstructing an ear canal from optical coherence tomography (OCT) scan data of an ear comprises extracting frame numbers and line numbers of interference intensities corresponding to one or more markers on an OCT scan guide, receiving reference frame numbers and lines numbers for one or more markers, determining a starting position and direction for the OCT ear scan from the ear scan marker frame and line numbers and the reference marker frame and line numbers, for each scan line, finding a pixel number of a maximum interference intensity value, and determining an offset distance of said pixel from said scan guide, and reconstructing a surface of the ear canal from the distance offset data.
摘要:
A method and appertaining system implement the use of manufacturing protocols for hearing aid design such that the ability to build an instrument can be displayed as a numeric parameter based on the partial numerical and metrological contributions of all the essential parameters of the given impression, and a buildability index can be displayed as a 3D virtual image of the proposed shell or preferred shell types. The method utilizes a predefined parameter table comprising parameters to utilize for a buildability determination. The buildability index is computed based on impression shape data, selected shell type, selected number of device options, data obtained from the parameter table, and data obtained from a receiver table, and the buildability index is output to a display of a user interface device or an external system.
摘要:
A method for reconstructing an ear canal from optical coherence tomography (OCT) scan data of an ear comprises extracting frame numbers and line numbers of interference intensities corresponding to one or more markers on an OCT scan guide, receiving reference frame numbers and lines numbers for one or more markers, determining a starting position and direction for the OCT ear scan from the ear scan marker frame and line numbers and the reference marker frame and line numbers, for each scan line, finding a pixel number of a maximum interference intensity value, and determining an offset distance of said pixel from said scan guide, and reconstructing a surface of the ear canal from the distance offset data.