Abstract:
A method by which high temperature properties of a ductile iron alloy, including creep and LCF properties, can be increased for pressure-containing components that are subject to creep and low cycle fatigue. The method comprises modifying the ductile iron alloy to contain 0.4 to 0.8 weight percent molybdenum. A casting of the modified ductile iron alloy is produced and then annealed at a temperature of at least 725° C. for not less than five hours to eliminate carbides and/or stabilize pearlite in the casting. The annealed casting of the modified ductile iron alloy exhibits improved creep resistance and low cycle fatigue properties in comparison to an identical casting of a ductile iron alloy that does not contain molybdenum.
Abstract:
A method for assembling a stator assembly for a turbine engine is provided. The method includes providing a blade with a base including an end wall having at least one hole defined therein and providing a shim having at least one aperture extending therethrough. The shim aperture is aligned with the end wall hole, and the shim is secured to the blade base end wall using a fastener. The fastener is inserted through the shim aperture in an interference fit within the end wall hole. The blade and the shim are coupled to a turbine casing.
Abstract:
The present application thus provides a turbine bucket. The turbine bucket may include a platform, an airfoil extending from the platform at an intersection thereof, and a core cavity extending within the platform and the airfoil. The core cavity may include a contoured turn about the intersection so as to reduce thermal stress therein.
Abstract:
The present application provides an inner nozzle platform. The inner nozzle platform may include a platform cavity, an impingement plenum positioned within the platform cavity, a retention plate positioned on a first side of the impingement plenum, and a compliant seal positioned on a second side of the impingement plenum.
Abstract:
A retaining device retains a pair of electrical power cords, one cord having a plug which is joined to a socket of the other cord. The device has first and second receptacles, each with a first open end and a second open end, and an opening extending from the first open end to the second open end. The first open end, the second open end, and the opening extending from the first open end to the second open end of the first and second receptacles together form a space for receiving the ends of the power cords, including the plug and socket. The first receptacle inserts into the second receptacle to adjust the overall length of the retaining device and locks in place to retain the ends of the pair of power cords and the plug and socket coupled to each other. The first receptacle is turned to release it from the second receptacle in order to remove the coupled ends of the power cords.
Abstract:
An article of manufacture has a first component configured for use with a turbomachine. The first component is configured for attachment to a second component, and reduces the possibility of attachment with an undesired third component by modification of a. characteristic of the first component. This modification is matched by a complementary characteristic of the second component. The first component has a nominal airfoil profile substantially in accordance with Cartesian coordinate values of X, Y and Z set forth in a scalable table selected from the group consisting of TABLES 1-11. Cartesian coordinate values of X, Y and Z are non-dimensional values convertible to dimensional distances by multiplying by a number. X and Y are coordinates which, when connected by continuing arcs, define airfoil profile sections at each Z height. The airfoil profile sections at each Z height being joined with one another to form a complete airfoil shape.
Abstract:
A method by which high temperature properties of a ductile iron alloy, including creep and LCF properties, can be increased for pressure-containing components that are subject to creep and low cycle fatigue. The method comprises modifying the ductile iron alloy to contain 0.4 to 0.8 weight percent molybdenum. A casting of the modified ductile iron alloy is produced and then annealed at a temperature of at least 725° C. for not less than five hours to eliminate carbides and/or stabilize pearlite in the casting. The annealed casting of the modified ductile iron alloy exhibits improved creep resistance and low cycle fatigue properties in comparison to an identical casting of a ductile iron alloy that does not contain molybdenum.
Abstract:
A system is provided for use with a first receiving communication device, a second receiving communication device, a first distribution communication device and a second distribution communication device. The first receiving communication device transmits a first posting signal having a first associated posting value. The second receiving communication device transmits a second posting signal having a second associated posting value. The first distribution communication device transmits a first distribution signal having a first distribution associated value. The second distribution communication device transmits a second distribution signal having a second distribution associated value.
Abstract:
An article of manufacture has a first component configured for use with a turbomachine. The first component is configured for attachment to a second component, and reduces the possibility of attachment with an undesired third component by modification of a characteristic of the first component. This modification is matched by a complementary characteristic of the second component. The first component has a nominal airfoil profile substantially in accordance with Cartesian coordinate values of X, Y and Z set forth in a scalable table selected from the group consisting of TABLES 1-11. Cartesian coordinate values of X, Y and Z are non-dimensional values convertible to dimensional distances by multiplying by a number. X and Y are coordinates which, when connected by continuing arcs, define airfoil profile sections at each Z height. The airfoil profile sections at each Z height being joined with one another to form a complete airfoil shape.