Abstract:
A cable modem (CM) device captures signals over a wide spectrum including one or more cable frequency bands and sub-bands, and extracts one or more cable channels from the captured signals. The CM device is operable to analyze the extracted one or more cable channels and assigns a portion of the extracted one or more cable channels for upstream and/or downstream communication based on the analysis. The CM device may recapture one or more previously unused cable channels to be utilized for the upstream and/or downstream communication based on the analysis. The CM device may determine noise, interference and/or blocker information corresponding to the extracted one or more cable channels based on the analysis. Based on the determined noise, interference and/or blocker information, the cable modem termination system (CMTS) may assign or block usage of one or more cable channels for the upstream and/or downstream communication.
Abstract:
A wideband receiver system is provided to concurrently receive multiple RF channels including a number of desired channels that are located in non-contiguous portions of a radio frequency spectrum and to group the number of desired channels into a contiguous frequency band. The system includes a wideband receiver having a complex mixer for down-shifting the multiple RF channels and transforming them to an in-phase signal and a quadrature signal in the baseband. The system further includes a wideband analog-to-digital converter module that digitizes the in-phase and quadrature signals and a digital frontend module that transforms the digital in-phase and quadrature signals to baseband signals that contains only the number of desired RF channels. that are now located in a contiguous frequency band. An up-converter module up-shifts the baseband signals to a contiguous band in an IF spectrum so that the system can directly interface with commercially available demodulators.
Abstract:
A thermal infrared imaging device (10) includes a thermal detector (50) having a linearly-arrayed plurality of spaced apart detector elements (50', 50", 50"', . . . ). A scene to be viewed is scanned across the detector (50) with successive fields of the scene shifted according the spacing between adjacent detector elements (50', 50", 50"', . . . ) in order to capture image information for the entire scene by interlacing of successive scan lines from the plurality of detector elements (50', 50", 50"', . . . ). Each complete scan of the viewed scene across the detector (50) creates an image field including a scan line for each detector element (50', 50", 50"', . . . ). Each scan line includes plural pixels, or picture elements of the viewed scene, each having a value indicative of the thermal infrared brightness of the viewed scene at the corresponding location along the scan line. An scan-line sum for each scan line is created by adding the absolute values of the pixel values for each scan line. The average of these scan-line sums is employed as a gain control factor to control the brightness of a visible image replicating the viewed scene. Further, the value of a median of the scan-line sums is used to limit gain variations which would otherwise be effected were the line-sum averages alone used to control the gain factor. Accordingly, even when a localized highly-radiant heat source (such as a fire) is within the field of view of the thermal imaging device, then in areas of the image away from the brightness caused by the fire the image does not go dark and a visible image good contrast is still maintained allowing features of the image to be viewed.
Abstract:
The present system provides a thermal imaging device including a detector array responsive to thermal infrared radiation. The detector array has a linearly-arrayed plurality of spaced-apart detector elements defining cooperatively a length dimension for the detector array. Each of the plurality of detector elements provides a corresponding individual electrical signal indicative of the thermal infrared radiation incident thereon. The detector elements vary from one another in the plurality of detector elements, and the thermal imaging device responsively provides a visible-light image replicating a viewed scene. The thermal imaging device includes a scanning device scanning the viewed scene across the plurality of detector elements in a direction generally perpendicular to the length dimension. The scanning device includes a first portion scanning the viewed scene across the entire plurality of the plurality of detector elements, and a second portion scanning the viewed scene across the plurality of detector elements with transposition of the viewed scene such that a portion of the viewed scene scanned by the first portion across a certain detector element is scanned across a detector element next-adjacent to the certain detector element.
Abstract:
Methods and systems for I/Q mismatch calibration and compensation for wideband communication receivers may comprise receiving a plurality of radio frequency (RF) channels, downconverting the received plurality of received RF channels to baseband frequencies, determining and removing average in-phase (I) and quadrature (Q) gain and phase mismatch of the downconverted channels, determining a residual phase and amplitude tilt of the downconverted channels with removed average I and Q gain and phase mismatch, and compensating for said residual phase and amplitude tilt I and Q gain and phase mismatch of the downconverted channels. The determined phase tilt may be compensated utilizing a phase tilt correction filter, which may comprise one or more all-pass filters. The average I and Q gain and phase mismatch may be determined utilizing a blind source separation (BSS) estimation algorithm.
Abstract:
A wideband receiver system is provided to concurrently receive multiple RF channels including a number of desired channels that are located in non-contiguous portions of a radio frequency spectrum and to group the number of desired channels into a contiguous frequency band. The system includes a wideband receiver having a complex mixer for down-shifting the multiple RF channels and transforming them to an in-phase signal and a quadrature signal in the baseband. The system further includes a wideband analog-to-digital converter module that digitizes the in-phase and quadrature signals and a digital frontend module that transforms the digital in-phase and quadrature signals to baseband signals that contains only the number of desired RF channels. that are now located in a contiguous frequency band. An up-converter module up-shifts the baseband signals to a contiguous band in an IF spectrum so that the system can directly interface with commercially available demodulators.
Abstract:
Methods and systems for I/Q mismatch calibration and compensation for wideband communication receivers may comprise receiving a plurality of radio frequency (RF) channels, downconverting the received plurality of received RF channels to baseband frequencies, determining and removing average in-phase (I) and quadrature (Q) gain and phase mismatch of the downconverted channels, determining a residual phase and amplitude tilt of the downconverted channels with removed average I and Q gain and phase mismatch, and compensating for said residual phase and amplitude tilt I and Q gain and phase mismatch of the downconverted channels. The determined phase tilt may be compensated utilizing a phase tilt correction filter, which may comprise one or more all-pass filters. The average I and Q gain and phase mismatch may be determined utilizing a blind source separation (BSS) estimation algorithm.
Abstract:
Generating a notch in an Orthogonal Frequency Division Multiplexing (OFDM) frequency spectrum includes determining a first active interference cancellation (AIC) tone, comparing the first AIC tone with an amplitude limit, in the event that the first AIC tone exceeds the amplitude limit, constraining the first AIC tone, and determining a second AIC tone based at least in part on the first AIC tone. An Active Interference Cancellation (AIC) tone generator includes an interface configured to receive a plurality of tones, a processing component coupled to the interface, configured to determine a first AIC tone, compare the first AIC tone with an amplitude limit, and in the event that the first AIC tone exceeds the amplitude limit, constrain the first AIC tone, and determine a second AIC tone based at least in part on the first AIC tone.
Abstract:
Systems and methods for monitoring transaction data and providing an indication regarding a performance parameter to a payment processing entity. Transaction data associated with a plurality of transactions conducted during a time interval is received. A server computer determines that the received transaction data meets a threshold. It is further determined whether a previous indication that the threshold has been met was provided to a payment processing entity, the previous indication being associated with a plurality of previous transactions conducted during a previous time interval. If the previous indication was not provided, an indication that the threshold has been met is provided to the payment processing entity, the indication including information regarding a performance parameter of the payment processing entity.
Abstract:
A cable modem device may include a plurality of cable modem termination system demodulators, a switching element and a plurality of cable termination system modem ports. The cable modem may receive signals from one of a plurality of downstream cable modems at one of the plurality of cable modem termination system ports and dynamically assign one of the plurality of cable modem termination system demodulators to one of the plurality of cable modem termination system ports. The signals received from the one of the plurality of downstream cable modems may be demodulated by the assigned one of the plurality of cable modem termination system demodulators. The assigned one of the plurality of cable modem termination system demodulators may be communicatively coupled to one of the plurality of cable modem termination system ports by the switching element. The switching element is operable to dynamically couple any one of the plurality of cable modem termination system demodulators to anyone of the plurality of cable modem termination system ports.