Abstract:
An upright deep cleaner including a base housing pivotally connected to an upright handle, the upright handle carrying a liquid supply tank and the base housing including a recovery tank. The liquid supply tank includes an internal siphon tube for ensuring liquid flow to a feed valve when the upright handle is in the inclined position. The base housing includes a suction nozzle adjacent a spray bar, and removable floating brush for contacting a surface being cleaned, the brush being interchangeable with a bare floor tool including a sponge, brush, and squeegee. The recovery tank includes an internal baffle for preventing foaming of solution and a tank vent housing including a sponge-type filter to prevent spray from exiting the recovery tank. A vacuum motor cooling outlet is positioned on underside of the base housing to distribute air heated by the motor onto the surface to be cleaned.
Abstract:
An upright water extraction cleaning machine having an assembly of tanks efficiently stored on and interconnected to the machine is shown. The tank assembly has at least two tanks nested with one another and having one-way valve mechanisms on the bottom thereof. The two tanks are slidably mounted to one another and the tank assembly is slidably mounted and operatively connected to the machine. With this structure, the user can quickly and easily remove and refill the tanks and continue operation of the machine with a minimum amount of interruption and delay.
Abstract:
A water extraction cleaning machine has a suction nozzle assembly with two suction nozzle openings incorporated. The suction nozzle openings are preferably positioned one on each side of the cleaning solution spray nozzles so that the cleaning machine can be used for simultaneous application and removal of cleaning fluid regardless of whether the user is pushing or pulling the cleaning machine. In another aspect, a plate member is slidably mounted to the bottom of the suction nozzle assembly. The plate member has a pair of suction nozzle openings which are spaced to seal one of the two suction nozzles of the suction nozzle assembly depending upon the direction of travel of the suction nozzle assembly.
Abstract:
A portable surface cleaning apparatus including a base module for movement along a surface, an upright handle pivotally attached to the base module, a liquid dispensing system including a flexible bladder defining a fluid supply chamber for holding a supply of cleaning fluid, a fluid recovery system including a tank on the base module having a fluid recovery chamber for holding recovered fluid and housing the flexible bladder, and a fluid passageway between the fluid supply chamber and the recovery chamber, whereby the recovery chamber is in fluid communication with the fluid supply chamber and the pressure in the flexible bladder is equalized with the pressure in the tank as the cleaning fluid is dispensed from the supply chamber and the dirty liquid is collected in the recovery chamber. In a further embodiment the tank has an outlet opening in a bottom portion thereof and a drain plug is removably mounted in the outlet opening. In another embodiment a lid mounted on the tank defines an expansion chamber having an inlet opening, an outlet passage, and first and second diverters against which the working air flow reverses direction twice between the inlet opening of the expansion chamber and the tank. In another embodiment the working air conduit includes a manual actuator knob having an over-center linkage mechanism connected to a conversion valve for movement between first and second positions and thereby selectively moving the conversion valve between open and closed positions, whereby fluid communication between the tank and the suction nozzle is selectively opened and closed. In a further embodiment, a flow indicator is mounted to the base module and has a visibility window observable to a user and the flow indicator is disposed in the fluid supply conduit and is responsive to the flow of fluid through the fluid supply conduit to visually indicate the flow of fluid through the supply conduit to the user. Another embodiment includes a pump primer connected to the pump and having a housing defining a priming chamber with a valved opening connected to the vacuum source, an inlet opening connected to the fluid supply chamber, and an outlet opening connected to an inlet for the pump. A further embodiment includes a first mechanical connector extending between the motor drive shaft and the pump drive shaft, whereby the motor drives both the agitation brush and the pump. In a further embodiment, the base module includes an upper housing portion and a lower housing portion and an upright handle is pivotably mounted to the rear portion of the base module through at least one bearing for rotatable reception in the housing. In another embodiment, an elevator assembly is reciprocally mounted to the base module and movable in response to movement of the upright handle from an operative position to the upright position for upwardly pivoting a pivot arm mounting an agitation brush.
Abstract:
A portable surface cleaning apparatus has a base for movement along a surface to be cleaned and an upright handle pivotally attached to a rearward portion of the base. A fluid dispensing nozzle for applying fluid to the surface and a suction nozzle for picking up fluid and debris from the surface are associated with the base. A clean water holding tank and a detergent holding tank are removably mounted to the handle while a recovery tank is removably mounted to the base. A mixing valve is fluidly connected between the holding tanks and the spray nozzle for changing the mixing ratio of the detergent with respect to the water. The fluid recovery tank includes an integrally molded conduit that extends from the suction nozzle and a mounting for an accessory hose that interrupts the fluid path from the suction nozzle in the conduit and redirects fluid flow through the hose. A pump is fluidly connected between the mixing valve and the dispensing nozzle and includes a pump priming valve that operates on negative air pressure to clear air from the fluid lines during pump operation. A free floating brush is pivotally attached to the base for automatically adjusting to different surface conditions during cleaning operations.
Abstract:
A portable surface cleaning apparatus including a base module for movement along a surface, an upright handle pivotally attached to the base module, a liquid dispensing system including a flexible bladder defining a fluid supply chamber for holding a supply of cleaning fluid, a fluid recovery system including a tank on the base module having a chamber for holding recovered fluid and housing the flexible bladder, and a passageway between the fluid supply chamber and the recovery chamber, whereby the recovery chamber is in communication with the fluid supply chamber and the pressure in the flexible bladder is equalized with the pressure in the tank as the cleaning fluid is dispensed from the supply chamber and the dirty liquid is collected in the recovery chamber. In a further embodiment the tank has an outlet opening in a bottom portion thereof and a drain plug is removably mounted in the outlet opening. In another embodiment a lid mounted on the tank defines an expansion chamber having an inlet opening, an outlet passage, and first and second diverters against which the working air flow reverses direction twice between the inlet opening of the expansion chamber and the tank. In another embodiment the working air conduit includes a manual actuator knob having an over-center linkage mechanism connected to a conversion valve for movement between first and second positions, thereby selectively moving the conversion valve between open and closed positions, whereby fluid communication between the tank and the suction nozzle is selectively opened and closed.
Abstract:
The invention relates to a water extraction cleaning machine having a variable solution mixing valve adapted to create cleaning solution mixtures of variable constituent ratios. Clean water and detergent are provided from tanks supported on the water extraction cleaning machines. The size of the detergent inlet opening can be altered through rotation of a control knob provided on the outside of the water extraction cleaning machine. The knob is interconnected to at least one member which is adapted to vary the size of one of the detergent fluid inlet and the clean water inlet so that the ratio of constituent elements can be altered depending upon the cleaning application.
Abstract:
An upright deep cleaner including a base housing pivotally connected to an upright handle, the upright handle carrying a liquid supply tank and the base housing including a recovery tank. The liquid supply tank includes an internal siphon tube for ensuring liquid flow to a feed valve when the upright handle is in the inclined position. The base housing includes a suction nozzle adjacent a spray bar, and removable floating brush for contacting a surface being cleaned, the brush being interchangeable with a bare floor tool including a sponge, brush, and squeegee. The recovery tank includes an internal baffle for preventing foaming of solution and a tank vent housing including a sponge-type filter to prevent spray from exiting the recovery tank.
Abstract:
A portable surface cleaning apparatus has a base for movement along a surface to be cleaned and an upright handle pivotally attached to a rearward portion of the base. A fluid dispensing nozzle for applying fluid to the surface and a suction nozzle for picking up fluid and debris from the surface are associated with the base. A clean water holding tank and a detergent holding tank are removably mounted to the handle while a recovery tank is removably mounted to the base. A mixing valve is fluidly connected between the holding tanks and the spray nozzle for changing the mixing ratio of the detergent with respect to the water. The fluid recovery tank includes an integrally molded conduit that extends from the suction nozzle and a mounting for an accessory hose that interrupts the fluid path from the suction nozzle in the conduit and redirects fluid flow through the hose. A pump is fluidly connected between the mixing valve and the dispensing nozzle and includes a pump priming valve that operates on negative air pressure to clear air from the fluid lines during pump operation. A free floating brush is pivotally attached to the base for automatically adjusting to different surface conditions during cleaning operations.
Abstract:
A portable surface cleaning apparatus has a base for movement along a surface to be cleaned and an upright handle pivotally attached to a rearward portion of the base. A fluid dispensing nozzle for applying fluid to the surface and a suction nozzle for picking up fluid and debris from the surface are associated with the base. A clean water holding tank and a detergent holding tank are removably mounted to the handle while a recovery tank is removably mounted to the base. A mixing valve is fluidly connected between the holding tanks and the spray nozzle for changing the mixing ratio of the detergent with respect to the water. The fluid recovery tank includes an integrally molded conduit that extends from the suction nozzle and a mounting for an accessory hose that interrupts the fluid path from the suction nozzle in the conduit and redirects fluid flow through the hose. A pump is fluidly connected between the mixing valve and the dispensing nozzle and includes a pump priming valve that operates on negative air pressure to clear air from the fluid lines during pump operation. A free floating brush is pivotally attached to the base for automatically adjusting to different surface conditions during cleaning operations.