Abstract:
Integrated sub-assemblies for light management are disclosed herein. The integrated sub-assemblies include a plurality of films and/or elements, including a light collimating device and/or a transflecting device. At least two of the elements are coupled such that there is no air layer between the coupled elements.
Abstract:
A method for manufacturing a collimating device is disclosed herein. In one embodiment the method includes a step of constructing a reflective layer. After the reflective layer is constructed, a step of constructing an optical element layer follows, including a step of forming an array of microstructures in the optical element layer. Next, the array of microstructures is abutted against the reflective layer. Heat and pressure are then applied to the optical element layer to puncture the reflective layer and penetrate a predetermined distance through the reflective layer. Sub-assemblies are also defined, wherein optical elements are coupled to prevent light loss.
Abstract:
A suspension-type packaging arrangement for a product includes an upper engagement section having an opening to receive a hook or the like, a lower product support section, and an intermediate display section located between the upper engagement section and the lower product support section. The product is secured to the product support section, and is exposed to allow the user to handle the product so as to evaluate and test the product prior to purchase. The upper engagement section and the lower product support section are configured so that the center of gravity of the product is generally in line with the location at which the hook engages the upper engagement section, so that the packaging arrangement and the product hang in a generally vertical orientation for display. The intermediate display section is defined by an outwardly facing wall, and may be configured to releasably secure a display card containing product information that is visible to the potential purchaser. In a preferred form, the wall defining the intermediate section is formed of a translucent material, so as to enable the user to view information carried on both the front and the back surfaces of the display card.
Abstract:
A liquid crystal module comprising a liquid crystal layer containing a plurality of pixels therein, a waveguide layer, and a reflective layer provided between the liquid crystal layer and the waveguide layer, the reflective layer includes a plurality of reflective areas and a plurality of apertures to permit light to pass therethrough. The waveguide layer can include a transparent material having first and second surfaces and a plurality of spaced-apart waveguide structures defining apertures therebetween disposed within the transparent material. The waveguide structures can be configured to guide light, entering the first surface of the transparent material, through the film and permit such light to exit the second surface of the transparent material.
Abstract:
A collimating device and a transflector for use in a system having a backlight is disclosed herein. In one embodiment of the application, the collimating device and the transflector each include an immersing layer, a reflecting layer, and an optical element layer formed from a plurality of three-dimensional, optical elements. Each optical element is tapered such that a small area end has a horizontal plane cross-sectional area that is less than that of a wide area end. The optical elements of the collimating device are tapered towards the backlight and the optical elements of the transflector are tapered away from the backlight. The reflecting layer has apertures which correspond to the position and shape of the light input ends of the optical elements.
Abstract:
A light control device is disclosed that includes a two film construction, each film having a plurality of light reflecting regions. For example, the light absorbing elements can be a series of grooves or column-like indentations in the films that are filled or coated with a light reflecting material having a lower index of refraction than that of the films. The two films can be adjacently disposed so that their respective light reflecting regions form a plurality of light reflecting elements that extend along the thickness direction of the device.