Abstract:
The present invention provides a method for producing asymmetrical mono-substituted alkylated compounds of α-amino acids that are represented by a specific formula, using an aldimine-type Schiff base. In the method of the present invention, the process of alkylating an aldimine-type Schiff base in a medium in the presence of an optically-active quaternary ammonium salt phase-transfer catalyst and an inorganic base is initiated, and subsequently the reaction is quenched at a time earlier than a time for completion of the stoichiometric reaction of the alkylation reaction, so that a mono-substituted alkylated product with high optical purity can be obtained.
Abstract:
A sound insulator of the invention includes a sound absorption layer and an air-impermeable resonance layer, which are bonded to each other via an adhesive layer. The sound absorption layer has a thickness in a range of 5 to 50 mm, an area-weight of not greater than 2000 g/m2 and a two-layer structure of a high-density sound absorption layer and a low-density sound absorption layer The high-density sound absorption layer is bonded to the air-impermeable resonance layer via the adhesive layer and has a density in a range of 0.05 to 0.20 g/cm3and a thickness in a range of 2 to 30 mm. The low-density sound absorption layer is bonded to the other face of the high-density sound absorption layer via an adhesive layer and has a density in a range of 0.01 to 0.10 g/cm3 and a thickness in a range of 2 to 30 mm.
Abstract translation:本发明的隔音器包括通过粘合剂层彼此结合的吸声层和不透气的共振层。 吸声层的厚度为5〜50mm,面积重量为2000g / m2以下,高密度吸声层和低密度吸音层的2层结构 高密度吸音层通过粘合剂层粘合到不透气的共振层上,其密度范围为0.05〜0.20g / cm 3,厚度为2〜30mm。 低密度吸音层经由粘合剂层与高密度吸声层的另一面接合,密度为0.01〜0.10g / cm 3,厚度为2〜30mm 。
Abstract:
A working fluid medium temperature control system comprises an actuator operable on a working fluid medium, a pump for the working fluid medium, a fluid passage structure for the working fluid medium, an electric motor drivingly connected to the pump, and a control unit for the electric motor, the control unit including an inverter and an inverter controller. The inverter and the electric motor are integrated in such a way that the inverter is in heat transfer communication with the electric motor. The fluid passage structure is in heat transfer communication with the inverter.
Abstract:
A sound insulator of the invention includes a sound absorption layer 202 and an air-impermeable resonance layer 203, which are bonded to each other via an adhesive layer 204. The sound absorption layer 202 has a thickness in a range of 5 to 50 mm and an area-weight of not greater than 2000 g/m2. The sound absorption layer 202 has a two-layer structure of a high-density sound absorption layer 202a and a low-density sound absorption layer 202b, which have different densities. The high-density sound absorption layer 202a is bonded to the air-impermeable resonance layer 203 via the adhesive layer 204 and has a density in a range of 0.05 to 0.20 g/cm3 and a thickness in a range of 2 to 30 mm. The low-density sound absorption layer 202b is bonded to the other face of the high-density sound absorption layer 202a, which is opposite to the air-impermeable resonance layer 203, via an adhesive layer 202c and has a density in a range of 0.01 to 0.10 g/cm3 and a thickness in a range of 2 to 30 mm. The structure of this sound insulator effectively reduces a noise level in a voice-tone frequency band, especially in a high frequency domain, thereby efficiently enhancing the clarity of conversion in a vehicle interior.
Abstract translation:本发明的隔音器包括通过粘合剂层204彼此结合的吸声层202和不透气的共振层203.吸声层202的厚度在5至50mm的范围内,并且 面积重量不大于2000g / m2。 吸声层202具有密度不同的高密度吸音层202a和低密度吸音层202b的两层结构。 高密度吸声层202a经由粘合层204与不透气性共振层203接合,密度为0.05〜0.20g / cm 3,厚度为2〜30mm。 低密度吸声层202b通过粘合层202c与密封层202c的密度相差不超过与气密性共振层203相反的高密度吸音层202a的另一面接合。 至0.10g / cm 3,厚度在2至30mm的范围内。 该隔音器的结构有效地降低了语音频带中的噪声水平,特别是在高频域,从而有效地提高了车辆内部的转换清晰度。
Abstract:
A transfer device for a vehicle includes a casing, a cylindrical input shaft supported by the casing, a first end of the input shaft engaging with a driveshaft, an output shaft supported on an internal surface of a second end of the input shaft and engaging with the second end of the input shaft, the output shaft including an oil passage formed therein in an axial direction, and a lubrication fluid supply passage supplying a lubrication fluid from the casing to the oil passage. The lubrication fluid supply passage includes an inner fluid tight chamber annularly formed with an external surface of the output shaft and an internal surface of the input shaft, a first passage establishing a communication between the inner fluid tight chamber and the oil passage, and a second passage establishing a communication between the inner fluid tight chamber and an external surface of the input shaft.
Abstract:
The present invention provides a method for producing asymmetrical mono-substituted alkylated compounds of α-amino acids that are represented by a specific formula, using an aldimine-type Schiff base. In the method of the present invention, the process of alkylating an aldimine-type Schiff base in a medium in the presence of an optically-active quaternary ammonium salt phase-transfer catalyst and an inorganic base is initiated, and subsequently the reaction is quenched at a time earlier than a time for completion of the stoichiometric reaction of the alkylation reaction, so that a mono-substituted alkylated product with high optical purity can be obtained.
Abstract:
An image forming apparatus includes an image forming section which transfers toner onto a latent image to form a toner image, a transfer section which transfers the toner image onto a recording material directly or via an intermediate transfer body, a fixing section which has a pair of rotatable members contacted and pressed each other, in which the recording material carrying the toner image is passed through the pair of rotatable members, and heats and presses the toner image to fix the toner image on the recording material, a cleaning section which cleans a peripheral surface of one of the pair of rotatable members, a paper dust amount measuring section which measures an amount of paper dust separably adhering to the recording material, before the toner image is transferred, and a control section which controls a cleaning operation rate of the cleaning section based on the measured amount of paper dust.
Abstract:
An image forming apparatus includes an image forming section which transfers toner onto a latent image due to a difference of electrostatic potential to form a toner image, a transfer section which transfers the toner image onto a recording material directly or via an intermediate transfer body, a fixing section which passes the recording material carrying the toner image between a fixing rotation body and a pressurizing member contacted and pressed each other, and heats and pressurizes to fix the toner image, and a paper dust amount measuring section which measures an amount of paper dust adhering to the recording material. The image forming section forms an image pattern with high toner area coverage at a predetermined interval based on the measured amount of paper dust, and the fixing section fixes the image pattern with the high toner area coverage transferred onto a recording material.
Abstract:
An oil supply system for a transmission includes a transmission casing; a transmission shaft disposed in the transmission casing; a plurality of gears relatively rotatably fitted on the transmission shaft; an oil passage axially formed in the transmission shaft; a trough portion formed on an inside wall of the transmission casing so as to receive oil splashed from the gears; and a connection passage formed in a side wall of the transmission casing and extending downwardly from the trough portion to the oil passage. The oil passage is opened at outer peripheral portions of the transmission shaft adjacent to the gears, and opened at one axial end of the transmission shaft. The trough portion is disposed above the transmission shaft and is extended axially along the transmission shaft.
Abstract:
After the rotor position has been fixed prior to the start of a motor, the driving mode can be rapidly switched to sensorless driving and the motor can be started and controlled, by conducting current conversions in such a power supply pattern that increases the starting output torque of the motor, and controlling the inverter output voltage.