摘要:
A novel silica which is in the form of ultrafine particles having mesopores and has a regular structure; and a process for producing the silica. The silica is a self-organized nanoparticulate silica characterized in that the average particle diameter is 4 to 30 nm, preferably 6 to 20 nm, and these particles are regularly arranged so as to form a primitive cubic lattice. The self-organized nanoparticulate silica is produced by mixing an alkoxysilane with an aqueous solution of a basic amino acid, reacting the mixture at 40 to 100° C., and subjecting the reaction mixture to drying and preferably to subsequent burning. Also provided is a process for producing fine silica particles having a particle diameter of 4 to 30 nm, which comprises mixing a solution of an alkoxysilane compound having 1 to 4 alkoxy groups with a solution of a basic amino acid and reacting the mixture at 20 to 100° C. to cause hydrolysis and condensation polymerization.
摘要:
A novel silica which is in the form of ultrafine particles having mesopores and has a regular structure; and a process for producing the silica. The silica is a self-organized nanoparticulate silica characterized in that the average particle diameter is 4 to 30 nm, preferably 6 to 20 nm, and these particles are regularly arranged so as to form a primitive cubic lattice. The self-organized nanoparticulate silica is produced by mixing an alkoxysilane with an aqueous solution of a basic amino acid, reacting the mixture at 40 to 100° C., and subjecting the reaction mixture to drying and preferably to subsequent burning. Also provided is a process for producing fine silica particles having a particle diameter of 4 to 30 nm, which comprises mixing a solution of an alkoxysilane compound having 1 to 4 alkoxy groups with a solution of a basic amino acid and reacting the mixture at 20 to 100° C. to cause hydrolysis and condensation polymerization.
摘要:
(A) An anionic surfactant, (B) a silicate monomer and (C) a basic silane are mixed in water or a mixed solvent of a water-miscible organic solvent and water to obtain a mesoporous silica complex having mesopores with a uniform size, the anionic surfactant Component (A) is removed by washing the resultant mesoporous silica complex with an acidic aqueous solution, a water-miscible organic solvent or an aqueous solution thereof to obtain a mesoporous silica outer shell utilizing the structure of the mesoporous silica complex as a template, and the mesoporous silica complex or the mesoporous silica outer shell is calcined to obtain a mesoporous silica. The mesoporous silica can be synthesized in this manner utilizing the anionic surfactant micelle with a remarkably low affinity to the silicate monomer.