Abstract:
A backlight module including a back cover, a reflector, a lamp supporter, and a number of lamps is provided. The back cover includes a number of holes, an inner face, and an outer face. The reflector is disposed on the inner face and has a number of openings. The openings expose parts of the holes. The lamp supporter has a base substrate and a number of carriers that are connected to the base substrate. The base substrate is assembled to the outer face of the back cover, and the carriers penetrate the holes of the back cover and the openings of the reflector. The lamps are disposed in the carriers, such that the lamps and the base substrate are located at two opposite sides of the back cover.
Abstract:
A backlight module including a back cover, a reflector, a lamp supporter, and a number of lamps is provided. The back cover includes a number of holes, an inner face, and an outer face. The reflector is disposed on the inner face and has a number of openings. The openings expose parts of the holes. The lamp supporter has a base substrate and a number of carriers that are connected to the base substrate. The base substrate is assembled to the outer face of the back cover, and the carriers penetrate the holes of the back cover and the openings of the reflector. The lamps are disposed in the carriers, such that the lamps and the base substrate are located at two opposite sides of the back cover.
Abstract:
A stereoscopic image display device includes a back bezel, a backlight module disposed on the back bezel, a frame set surrounding and positioning the backlight module, and a liquid crystal panel receiving light emitted from the backlight module; wherein the liquid crystal panel is surrounded and supported by the frame set and has a transparent plate attached to the display surface of the liquid crystal panel. There is a stereoscopic image producing layer formed at a side of the transparent plate facing the display surface of the liquid crystal panel. The transparent plate, the frame set, and the back bezel constitute the outward appearance of the stereoscopic image display device.
Abstract:
A stereoscopic image display device includes a back bezel, a backlight module disposed on the back bezel, a frame set surrounding and positioning the backlight module, and a liquid crystal panel receiving light emitted from the backlight module; wherein the liquid crystal panel is surrounded and supported by the frame set and has a transparent plate attached to the display surface of the liquid crystal panel. There is a stereoscopic image producing layer formed at a side of the transparent plate facing the display surface of the liquid crystal panel. The transparent plate, the frame set, and the back bezel constitute the outward appearance of the stereoscopic image display device.
Abstract:
A liquid crystal display (LCD) module includes a back bezel, a backlight module, a frame, an LCD panel, a circuit board, an assembling element, and a gasket. The frame has a top part and a bottom part opposite to the top part, and the bottom part faces the back bezel. The circuit board is configured on the top part of the frame and has a first surface and a second surface opposite to the first surface. The second surface faces the frame, and the circuit board has a ground area on the second surface. The assembling element pierces through the frame and connects the frame to the back bezel. The gasket leans against the ground area of the circuit board and the assembling element to form a conductive path from the ground area, the gasket, the assembling element to the back bezel.
Abstract:
A liquid crystal display (LCD) module includes a back bezel, a backlight module, a frame, an LCD panel, a circuit board, an assembling element, and a gasket. The frame has a top part and a bottom part opposite to the top part, and the bottom part faces the back bezel. The circuit board is configured on the top part of the frame and has a first surface and a second surface opposite to the first surface. The second surface faces the frame, and the circuit board has a ground area on the second surface. The assembling element pierces through the frame and connects the frame to the back bezel. The gasket leans against the ground area of the circuit board and the assembling element to form a conductive path from the ground area, the gasket, the assembling element to the back bezel.