摘要:
This document describes a proactive mechanism to provide fast-handover involving PMIPv6. In particular, it describes how one can achieve fast handoff for PMIPv6 using Media-independent Pre-Authentication (MPA) technique. It discusses the need for a fast-handoff for PMIPv6 environment. It then describes how MPA techniques could be used during different steps involving both intra-domain and inter-domain handoff for PMIPv6. MPA-based fast-handover takes advantage of the pre-authentication mechanism so that the mobile can perform the access authentication while in the previous local mobility (PMA) domain and thus would be able to complete many of the handoff related operations while still in the previous network.
摘要:
A single burst method is used to determine the available bandwidth in a network environment. A sending node transmits test packets to a receiving node. The size of the test packets is dynamically determining based on network parameters within the network environment. The sending node then receives test receipt packets that have the same sequence numbers as the corresponding test packets. Packet clusters are formed from the test receipt packets. The available bandwidth is determined based on the packet clusters along with values set by the single burst method or inputted by a user.
摘要:
This present application relates to, among other things, Key Caching, QoS and Multicast extensions and improvements to the Media-independent Pre-Authentication (MPA) framework, a new handover optimization mechanism that has a potential to address issues on existing mobility management protocols and mobility optimization mechanisms. MPA is a mobile assisted, secure handover optimization scheme that works over any link-layer and with any mobility management protocol.
摘要:
Transportation costs are minimized with a novel system for optimizing a route for a service vehicle, for example, a package delivery van. Based upon static and dynamic information, a computer on board the service vehicle determines an optimum route for the vehicle to travel between multiple locations. The computer on board the service vehicle communicates wirelessly to receive any pertinent dynamic information which has changed (e.g., traffic congestion, the presence of a customer at a deliver location, or a modification of location). The computer then recalculates the optimum route for the vehicle and guides the driver of the vehicle in accordance with the newly determined optimum route. The on board computer continues to check for any updates, and recalculates the optimum route throughout the day. Thus, the optimum route may be selected based upon the latest available information white avoiding heavy signal traffic on the wireless network.
摘要:
The preferred embodiments describe an optimized method of determining “link down” indication from mobile or other non-access-point station (such as, e.g., an 802.11 non-access-point station) operating in managed mode. In the preferred embodiments, the method uses MAC layer operations for verifying communicability with an access point. This preferred methods can be used for, e.g., providing a fast “link down” event indication and can help in quickly assisting L3 protocols to take necessary actions.
摘要:
The present invention relates to the use of buffering packets for the mobile node at an access router or network node near the edge of the network that the mobile is moving away from or towards. The buffered packets are then forwarded to the mobile node once the handoff process is completed. This invention also relates to the use of buffering packets originating from the mobile node during the handoff process. The buffered packets are then forwarded to their intended destinations once the handoff process is completed. The buffering system is used in conjunction with existing mobility protocols, access protocols, or as an independent network or link layer mechanism.
摘要:
Currently, the I.E.E.E. 802.21 specification allows multiple MIH (Media-Independent Handover) Users in a single MIH Function. However, the specification is not clear about how multiple MIH Users are supported by a single MIHF (MIH Function) under a constraint in which if there is only one MIH User is allowed to change the state of a particular link during a particular period of time. This document proposes a detailed architecture which allows for the co-existence of multiple MIH Users by introducing a link ownership scheme in the MIHF (MIH Function). The proposed link ownership scheme also supports the scenario in which the state of a link of a mobile node is changed by a network node by modifying the MIH_Register primitives in the I.E.E.E. 802.21 specification to signal the set of allocated links to a remote MIH User on the network node. The modification of MIH_Register primitive also has the added benefit of allowing the network node to subscribe to events on a specific set of links present in the mobile node as opposed to not knowing any of the links at all.
摘要:
The present invention relates to the handing off without packet loss, from a mobile device traveling from a current point of attachment to a new point of attachment, by providing a copy and forward module in association with the current point of attachment. The copy and forward module copies and stores packets that are being transmitted to a mobile node while the mobile node is in transition from the current point of attachment to the new point of attachment. The copy and forward module maintains a list of addresses as the last known contact addresses of the mobile node, and the mobile node's initial copy request contains an initial contact address of the mobile node. Subsequent copy requests are used to add or delete addresses to the list, and carry a per-address flag to indicate whether the address is to be added or deleted from the list.
摘要:
A single burst method is used to determine the available bandwidth in a network environment. A sending node transmits test packets to a receiving node. The size of the test packets is dynamically determining based on network parameters within the network environment. The sending node then receives test receipt packets that have the same sequence numbers as the corresponding test packets. Packet clusters are formed from the test receipt packets. The available bandwidth is determined based on the packet clusters along with values set by the single burst method or inputted by a user.
摘要:
This document describes a proactive mechanism to provide fast-handover involving PMIPv6. In particular, it describes how one can achieve fast handoff for PMIPv6 using Media-independent Pre-Authentication (MPA) technique. It discusses the need for a fast-handoff for PMIPv6 environment. It then describes how MPA techniques could be used during different steps involving both intra-domain and inter-domain handoff for PMIPv6. MPA-based fast-handover takes advantage of the pre-authentication mechanism so that the mobile can perform the access authentication while in the previous local mobility (PMA) domain and thus would be able to complete many of the handoff related operations while still in the previous network.