Abstract:
Methods of applying laser light to the skin, and apparatus therefor, include methods for removing hair, for synchronizing hair growth, for stimulating hair growth, for treating Herpes virus, for reducing sweat and body odor, for in situ formation of a chromophore in hair ducts, for reducing light loss at the skin surface, for grafting of hair stem cells, and for removing keloid or hypertrophic scars. The hair removal methods include controlling the proportions of photomechanical and photothermal damage by selection of laser parameters, chromophore particle size and/or pulse duration, with optional dynamic skin cooling. Additional hair removal methods include infiltrating a photoactivated drug into hair ducts and exposing the skin to sunlight or administering an anti-proliferative agent into hair ducts, for example, by encapsulating the anti-proliferative agent in a slow release vehicle. The methods of treating Herpes virus, reducing sweat or body odor, and removing keloid or hypertrophic scars include infiltrating a light-absorbing contaminant into hair ducts or other openings in the skin and illuminating the contaminated skin section. The methods for stimulating hair growth include grafting of cloned auto hair stem cells the hair ducts or administering methionine to a skin section to increase hair growth. Apparatus useful in performing these methods include devices for making a smooth optical boundary between skin and air or for dividing a light beam into a plurality of smaller light beams, and dressings for use before, during and after laser illumination.
Abstract:
Methods of applying laser light to the skin, and apparatus therefor, include methods for removing hair, for bleaching hair, for transdermal drug delivery, for sensing a body function, for skin tightening, and for imaging subsurface structures are described. The hair removal methods and the hair bleaching methods include infiltrating a transparent fluid with an index of refraction greater than that of skin tissue into hair ducts to help transmit the laser light down the hair ducts. The transdermal drug delivery and body function sensing methods include exfoliating layers of the stratum corneum from a section of skin with laser light. A transdermal drug delivery patch can be placed over the exfoliated skin section, or an electrical sensor can be placed over the exfoliated skin section. The skin tightening method includes implanting a light absorbing material in the dermis of a section of skin and illuminating the skin section to disturb the dermis in such a way as to cause a healing reaction that forms more collagen fibers. The imaging system includes a confocal microscope that has been adapted to view only a time-gated portion of laser light reflected from the skin.