-
公开(公告)号:US20240358243A1
公开(公告)日:2024-10-31
申请号:US18643780
申请日:2024-04-23
Applicant: Asensus Surgical Europe S.à.R.L.
Inventor: Gal Atarot , Yaron Levinson
IPC: A61B1/045 , A61B1/00 , A61B17/00 , A61B34/00 , A61B34/20 , A61B34/35 , A61B90/00 , B25J13/08 , B25J19/02
CPC classification number: A61B1/045 , A61B1/00004 , A61B1/00009 , A61B1/0004 , A61B1/00147 , A61B34/35 , A61B90/37 , B25J13/08 , B25J19/021 , A61B2017/00026 , A61B2017/00075 , A61B2017/00084 , A61B2034/2048 , A61B2034/741 , A61B2034/742
Abstract: The present invention provides a system for controlling an endoscope, comprising a. an endoscope adapted to provide real time images of FOV within a body cavity; said FOV defines FOVx-axis, FOVy-axis and FOVz-axis, b. a maneuvering system for maneuvering said endoscope; said maneuvering system defines an X-axis, a y-axis; and, a z-axis; c. control means adapted to receive commands of motions from a user to maneuver said endoscope; and d. a data processing system in communication with said control means, adapted to instruct said maneuvering system to maneuver said endoscope according to said commands of motions; wherein said data control means instructs said maneuvering system to maneuver said endoscope according to said commands of motions relative to said FOVx-axis, said FOVy-axis and said FOVz-axis, regardless of said X-axis, said y-axis and said z-axis as defined by said maneuvering system.
-
公开(公告)号:US12121256B2
公开(公告)日:2024-10-22
申请号:US18131635
申请日:2023-04-06
Applicant: Cilag GmbH International
Inventor: Cameron R. Nott , Fergus P. Quigley , Amrita S. Sawhney , Stephen M. Leuck , Brian D. Black , Eric M. Roberson , Kristen G. Denzinger , Patrick J. Scoggins , Craig N. Faller , Madeleine C. Jayme , Jacob S. Gee
IPC: A61B17/32 , A61B17/00 , A61B17/22 , A61B17/3211 , A61B18/12 , A61B18/14 , A61B17/28 , A61B18/00 , A61B34/10 , A61B34/30 , A61B90/00
CPC classification number: A61B17/320068 , A61B17/00234 , A61B17/22012 , A61B17/320092 , A61B17/3211 , A61B18/12 , A61B18/1206 , A61B18/1233 , A61B18/14 , A61B18/1442 , A61B18/1445 , A61B2017/00017 , A61B2017/00022 , A61B2017/00026 , A61B2017/0003 , A61B2017/00039 , A61B2017/00061 , A61B2017/00075 , A61B2017/00084 , A61B2017/00106 , A61B2017/00115 , A61B2017/00137 , A61B2017/00146 , A61B2017/00154 , A61B2017/00199 , A61B2017/00221 , A61B2017/00398 , A61B2017/00464 , A61B2017/00477 , A61B2017/00482 , A61B2017/0084 , A61B2017/22014 , A61B17/282 , A61B2017/2825 , A61B2017/32007 , A61B2017/320073 , A61B2017/320074 , A61B2017/320084 , A61B2017/320094 , A61B2017/320095 , A61B2017/320097 , A61B2018/00589 , A61B2018/00595 , A61B2018/00601 , A61B2018/00607 , A61B2018/00619 , A61B2018/0063 , A61B2018/00648 , A61B2018/00684 , A61B2018/00702 , A61B2018/00791 , A61B2018/00827 , A61B2018/00875 , A61B2018/00886 , A61B2018/00892 , A61B2018/00994 , A61B2018/1253 , A61B2018/126 , A61B2018/128 , A61B2018/1412 , A61B2018/1452 , A61B2034/107 , A61B34/30 , A61B2090/065 , A61B2090/066 , A61B2090/0808 , A61B2090/0809 , A61B2090/0811 , A61B90/361 , A61B2217/005 , A61B2218/002 , A61B2218/008
Abstract: A generator, ultrasonic device, and method for controlling a temperature of an ultrasonic blade are disclosed. A control circuit coupled to a memory determines an actual resonant frequency of an ultrasonic electromechanical system comprising an ultrasonic transducer coupled to an ultrasonic blade by an ultrasonic waveguide. The actual resonant frequency is correlated to an actual temperature of the ultrasonic blade. The control circuit retrieves from the memory a reference resonant frequency of the ultrasonic electromechanical system. The reference resonant frequency is correlated to a reference temperature of the ultrasonic blade. The control circuit then infers the temperature of the ultrasonic blade based on the difference between the actual resonant frequency and the reference resonant frequency. The control circuit controls the temperature of the ultrasonic blade based on the inferred temperature.
-
公开(公告)号:US20240341764A1
公开(公告)日:2024-10-17
申请号:US18752062
申请日:2024-06-24
Applicant: Cilag GmbH International
Inventor: Daniel L. Baber , Jeffrey S. Swayze , Andrew T. Beckman , Frederick E. Shelton, IV
IPC: A61B17/072 , A61B5/00 , A61B5/06 , A61B5/107 , A61B8/00 , A61B8/12 , A61B17/00 , A61B17/064 , A61B17/068 , A61B17/10 , A61B17/115 , A61B17/29 , A61B17/32 , A61B18/00 , A61B90/00 , A61B90/30 , A61B90/70 , A61B90/90 , A61B90/92 , A61B90/94 , A61B90/96 , A61B90/98 , G01R33/07 , G06F1/26 , G06F1/28 , G06F1/30 , G06F1/3215 , G06F1/3287 , H02H1/06 , H02H3/02 , H02H3/04 , H02H3/06 , H02H3/087 , H02H3/18 , H02H3/20 , H02H3/24 , H02H7/20 , H02H11/00 , H02J1/10 , H02J7/00
CPC classification number: A61B17/07207 , A61B5/6847 , A61B17/00 , A61B17/0644 , A61B17/068 , A61B17/072 , A61B17/07292 , A61B17/105 , A61B17/1155 , A61B17/32 , A61B90/06 , A61B90/70 , A61B90/92 , A61B90/98 , G01R33/072 , G06F1/266 , G06F1/28 , G06F1/30 , G06F1/305 , G06F1/3215 , G06F1/3287 , H02H1/06 , H02H3/06 , H02H3/087 , H02H3/18 , H02H3/202 , H02H3/207 , H02H3/243 , H02H7/20 , H02H11/002 , H02J1/10 , H02J7/0068 , A61B5/067 , A61B5/1076 , A61B5/6885 , A61B8/12 , A61B8/4483 , A61B2017/00017 , A61B2017/00022 , A61B2017/00026 , A61B2017/00039 , A61B2017/00061 , A61B2017/00066 , A61B2017/00075 , A61B2017/00106 , A61B2017/00115 , A61B2017/00119 , A61B2017/00123 , A61B2017/00199 , A61B2017/00393 , A61B2017/00398 , A61B2017/0046 , A61B2017/00477 , A61B2017/00725 , A61B2017/00734 , A61B2017/00876 , A61B2017/07214 , A61B2017/07257 , A61B2017/07271 , A61B2017/07285 , A61B2017/2927 , A61B2018/00648 , A61B2090/061 , A61B2090/064 , A61B2090/065 , A61B2090/0803 , A61B2090/0806 , A61B2090/0807 , A61B2090/0808 , A61B2090/081 , A61B2090/0811 , A61B2090/0814 , A61B2090/0818 , A61B2090/304 , A61B2090/309 , A61B2090/702 , A61B90/90 , A61B90/94 , A61B90/96 , A61B2505/05 , A61B2562/0223 , A61B2562/0247 , A61B2562/0257 , A61B2562/0261 , A61B2562/029 , A61B2562/043 , A61B2562/06 , A61B2562/223 , H02H3/02 , H02H3/04
Abstract: An end effector for use with a surgical stapling instrument is disclosed. The end effector comprises a first jaw, a second jaw movable relative to the first jaw to grasp tissue therebetween, and a staple cartridge. The staple cartridge comprises staples deployable into the tissue. The end effector further comprises a magnetic sensor configured to measure a parameter indicative of an identifying characteristic of the staple cartridge, an impedance sensor configured to measure a parameter indicative of an impedance of the tissue, and a processing unit in communication with the impedance sensor. The processing unit is configured to determine a property of the tissue based on an output of the impedance sensor.
-
公开(公告)号:US20240307114A1
公开(公告)日:2024-09-19
申请号:US18674511
申请日:2024-05-24
Applicant: Boston Scientific Scimed, Inc.
Inventor: Steven R. Mickelsen
IPC: A61B18/14 , A61B5/0538 , A61B17/00 , A61B18/00 , A61B18/12 , A61B18/18 , A61N1/04 , A61N1/32 , A61N7/02
CPC classification number: A61B18/1492 , A61B5/0538 , A61N1/327 , A61N7/022 , A61B2017/00026 , A61B2017/00154 , A61B2018/0022 , A61B2018/00267 , A61B2018/00351 , A61B2018/00404 , A61B2018/00577 , A61B2018/00613 , A61B2018/00654 , A61B2018/00827 , A61B2018/00839 , A61B2018/00875 , A61B2018/00892 , A61B2018/00994 , A61B2018/124 , A61B2018/1467 , A61B18/1815 , A61B2218/002 , A61B2576/023 , A61N1/0412
Abstract: Catheter systems and methods for the selective and rapid application of DC voltage to drive irreversible electroporation are disclosed herein. In some embodiments, an apparatus includes a voltage pulse generator and an electrode controller. The voltage pulse generator is configured to produce a pulsed voltage waveform. The electrode controller is configured to be operably coupled to the voltage pulse generator and a medical device including a series of electrodes. The electrode controller includes a selection module and a pulse delivery module. The selection module is configured to select a subset of electrodes from the series of electrodes. The selection module is configured identify at least one electrode as an anode and at least one electrode as a cathode. The pulse delivery module is configured to deliver an output signal associated with the pulsed voltage waveform to the subset of electrodes.
-
公开(公告)号:US20240299101A1
公开(公告)日:2024-09-12
申请号:US18441686
申请日:2024-02-14
Applicant: St. Jude Medical, Cardiology Division, Inc.
Inventor: Louis-Philippe Richer , Nikolaos Politis , Jan Mangual , Saurabh Datta , Luc Soucie , Theodore Paul Dale
CPC classification number: A61B34/20 , A61B5/068 , A61B17/12122 , A61B17/12172 , A61B34/10 , A61B2017/00026 , A61B2017/1205 , A61B2034/105 , A61B2034/2051
Abstract: Techniques are provided for guidance for navigation and positioning of intravascularly delivered devices. A medical navigation system includes a delivery device comprising a catheter, an intravascularly delivered device configured to be releasably disposed in the catheter for deployment at a target site of a patient, and a navigation computer system. The intravascularly delivered device includes a plurality of electrodes including at least one indicator electrode and at least one reference electrode configured to not contact tissue when the intravascularly delivered device is deployed at the target site. The navigation computer system is configured to be electrically coupled with the plurality of electrodes. The navigation computer system controls a drive source to transmit current to the plurality of electrodes, collects electrode data corresponding to the plurality of electrodes, monitors impedance corresponding to the indicator electrode, and determines that the indicator electrode has made contact with tissue.
-
公开(公告)号:US20240299088A1
公开(公告)日:2024-09-12
申请号:US18664140
申请日:2024-05-14
Applicant: Boston Scientific Scimed, Inc.
Inventor: Steven R. Mickelsen
IPC: A61B18/14 , A61B5/0538 , A61B17/00 , A61B18/00 , A61B18/12 , A61B18/18 , A61N1/04 , A61N1/32 , A61N7/02
CPC classification number: A61B18/1492 , A61B5/0538 , A61N1/327 , A61N7/022 , A61B2017/00026 , A61B2017/00154 , A61B2018/0022 , A61B2018/00267 , A61B2018/00351 , A61B2018/00404 , A61B2018/00577 , A61B2018/00613 , A61B2018/00654 , A61B2018/00827 , A61B2018/00839 , A61B2018/00875 , A61B2018/00892 , A61B2018/00994 , A61B2018/124 , A61B2018/1467 , A61B18/1815 , A61B2218/002 , A61B2576/023 , A61N1/0412
Abstract: Catheter systems and methods for the selective and rapid application of DC voltage to drive irreversible electroporation are disclosed herein. In some embodiments, an apparatus includes a voltage pulse generator and an electrode controller. The voltage pulse generator is configured to produce a pulsed voltage waveform. The electrode controller is configured to be operably coupled to the voltage pulse generator and a medical device including a series of electrodes. The electrode controller includes a selection module and a pulse delivery module. The selection module is configured to select a subset of electrodes from the series of electrodes. The selection module is configured identify at least one electrode as an anode and at least one electrode as a cathode. The pulse delivery module is configured to deliver an output signal associated with the pulsed voltage waveform to the subset of electrodes.
-
公开(公告)号:US12062442B2
公开(公告)日:2024-08-13
申请号:US17854087
申请日:2022-06-30
Applicant: Cilag GmbH International
Inventor: Frederick E. Shelton, IV
IPC: G16H40/63 , A61B5/00 , A61B5/02 , A61B5/06 , A61B17/00 , A61B17/02 , A61B17/062 , A61B17/068 , A61B17/072 , A61B17/08 , A61B17/10 , A61B17/115 , A61B17/122 , A61B17/128 , A61B17/28 , A61B17/29 , A61B17/32 , A61B17/34 , A61B34/00 , A61B34/30 , A61B34/37 , A61B90/00 , A61B90/90 , G16H40/67 , H03K17/95 , H03K17/955 , A61B17/04 , A61B17/06 , A61B17/064 , A61B18/00 , A61B18/12 , A61B18/14 , A61B34/20 , A61B90/53 , A61B90/92 , A61B90/96 , A61B90/98
CPC classification number: G16H40/63 , A61B5/02042 , A61B5/065 , A61B5/6847 , A61B17/02 , A61B17/0625 , A61B17/0682 , A61B17/072 , A61B17/07207 , A61B17/083 , A61B17/105 , A61B17/1155 , A61B17/122 , A61B17/1222 , A61B17/1227 , A61B17/1285 , A61B17/28 , A61B17/29 , A61B17/320068 , A61B17/320092 , A61B17/3421 , A61B34/25 , A61B34/30 , A61B34/37 , A61B90/37 , A61B90/90 , G16H40/67 , H03K17/9535 , H03K17/955 , A61B2017/00017 , A61B2017/00022 , A61B2017/00026 , A61B2017/0003 , A61B2017/00039 , A61B2017/00061 , A61B2017/00075 , A61B2017/00084 , A61B2017/00115 , A61B2017/00119 , A61B2017/00123 , A61B2017/00128 , A61B2017/00154 , A61B2017/00176 , A61B2017/00199 , A61B2017/00203 , A61B2017/00221 , A61B2017/00327 , A61B2017/00367 , A61B2017/00393 , A61B2017/00398 , A61B2017/00424 , A61B2017/0046 , A61B2017/00464 , A61B2017/00473 , A61B2017/00477 , A61B2017/00482 , A61B2017/00725 , A61B2017/00734 , A61B2017/00809 , A61B2017/00818 , A61B2017/00876 , A61B2017/00938 , A61B17/0482 , A61B2017/06076 , A61B17/0644 , A61B2017/07214 , A61B2017/07228 , A61B2017/07235 , A61B2017/07271 , A61B2017/07285 , A61B2017/2903 , A61B17/2909 , A61B2017/2927 , A61B2017/2929 , A61B2017/2931 , A61B2017/2936 , A61B2017/2943 , A61B2017/2944 , A61B2017/320044 , A61B2018/00178 , A61B2018/00303 , A61B2018/0063 , A61B2018/00678 , A61B2018/00702 , A61B2018/00797 , A61B2018/00875 , A61B2018/0091 , A61B2018/00988 , A61B2018/00994 , A61B2018/1253 , A61B2018/126 , A61B2018/1273 , A61B18/1445 , A61B2034/2051 , A61B2034/305 , A61B2090/032 , A61B2090/035 , A61B2090/061 , A61B2090/064 , A61B2090/065 , A61B2090/066 , A61B2090/0803 , A61B2090/0807 , A61B2090/0808 , A61B2090/0809 , A61B2090/0811 , A61B2090/0814 , A61B2090/365 , A61B2090/373 , A61B2090/3735 , A61B2090/392 , A61B2090/3937 , A61B2090/397 , A61B90/53 , A61B90/92 , A61B90/96 , A61B90/98 , A61B2217/005 , A61B2217/007 , A61B2218/002 , A61B2218/008 , A61B2562/0257
Abstract: A method for adjusting the operation of a surgical instrument using machine learning in a surgical suite is disclosed.
-
公开(公告)号:US12042207B2
公开(公告)日:2024-07-23
申请号:US17962901
申请日:2022-10-10
Applicant: Cilag GmbH International
Inventor: Cameron R. Nott , Foster B. Stulen , Fergus P. Quigley , John E. Brady , Gregory A. Trees , Amrita Singh Sawhney , Rafael J. Ruiz Ortiz , Patrick J. Scoggins , Kristen G. Denzinger , Craig N. Faller , Madeleine C. Jayme , Alexander R. Cuti , Matthew S. Schneider , Chad P. Boudreaux , Brian D. Black , Maxwell T. Rockman , Gregory D. Bishop , Frederick E. Shelton, IV , David C. Yates
IPC: A61B18/12 , A61B8/00 , A61B17/32 , A61B18/14 , A61B34/30 , A61B90/00 , G06F1/02 , A61B17/00 , A61B17/072 , A61B18/00
CPC classification number: A61B18/1206 , A61B8/4483 , A61B17/320068 , A61B17/320092 , A61B18/12 , A61B18/14 , A61B34/30 , A61B90/37 , G06F1/022 , A61B2017/00017 , A61B2017/00022 , A61B2017/00026 , A61B2017/0003 , A61B2017/00075 , A61B2017/00084 , A61B2017/00106 , A61B2017/00115 , A61B2017/00199 , A61B2017/00221 , A61B2017/00398 , A61B2017/00464 , A61B2017/07285 , A61B2018/00994 , A61B2090/064 , A61B2090/066 , A61B2090/0809 , A61B2090/0811 , A61B2217/005 , A61B2217/007
Abstract: Various aspects of a generator, ultrasonic device, and method for estimating a state of an end effector of an ultrasonic device are disclosed. The ultrasonic device includes an electromechanical ultrasonic system defined by a predetermined resonant frequency, including an ultrasonic transducer coupled to an ultrasonic blade. A control circuit measures a complex impedance of an ultrasonic transducer, wherein the complex impedance is defined as
Z
g
(
t
)
=
V
g
(
t
)
I
g
(
t
)
.
The control circuit receives a complex impedance measurement data point and compares the complex impedance measurement data point to a data point in a reference complex impedance characteristic pattern. The control circuit then classifies the complex impedance measurement data point based on a result of the comparison analysis and assigns a state or condition of the end effector based on the result of the comparison analysis.-
公开(公告)号:US12035956B2
公开(公告)日:2024-07-16
申请号:US16562175
申请日:2019-09-05
Applicant: Cilag GmbH International
Inventor: Ryan M. Asher
IPC: A61B18/00 , A61B17/32 , A61B18/12 , A61B18/14 , A61B34/00 , A61B34/20 , A61B34/35 , A61B90/00 , G06F3/0481 , G06F3/04847 , G06F3/14 , A61B17/00 , A61B17/072 , A61B34/30 , A61B90/30
CPC classification number: A61B18/00 , A61B17/320068 , A61B18/1206 , A61B18/14 , A61B18/1482 , A61B34/20 , A61B34/35 , A61B34/74 , A61B90/361 , G06F3/0481 , G06F3/04847 , G06F3/14 , A61B2017/00026 , A61B2017/00039 , A61B2017/00119 , A61B2017/00199 , A61B2017/00212 , A61B2017/00221 , A61B2017/00225 , A61B2017/00398 , A61B2017/00477 , A61B2017/00973 , A61B17/07207 , A61B2017/320094 , A61B2017/320095 , A61B2018/00601 , A61B2018/0063 , A61B2018/00702 , A61B2018/00761 , A61B2018/00982 , A61B2018/00994 , A61B2018/1253 , A61B2018/126 , A61B18/1442 , A61B2034/2048 , A61B2034/2055 , A61B34/25 , A61B34/30 , A61B2034/301 , A61B2034/305 , A61B2090/0805 , A61B90/30 , A61B90/37 , A61B2090/371 , A61B2090/378 , A61B2218/002 , A61B2218/006 , A61B2218/007 , A61B2218/008 , A61B2560/0214
Abstract: An energy module is disclosed. The energy module includes a real time clock and a control circuit coupled to the real time clock. The circuit is configured to detect the presence of a surgical instrument coupled to the energy module, track usage of the surgical instrument in real time based on the real time clock, and deactivate the surgical instrument based on a predetermined total elapsed time based on the real time clock.
-
公开(公告)号:US12011163B2
公开(公告)日:2024-06-18
申请号:US17156306
申请日:2021-01-22
Applicant: Cilag GmbH International
Inventor: Frederick E. Shelton, IV , Chad E. Eckert , Jason L. Harris
IPC: A61B17/32 , A61B5/00 , A61B5/0537 , A61B17/068 , A61B17/072 , A61B18/14 , A61B90/00 , A61B5/145 , A61B17/00 , A61B34/00 , A61B34/30
CPC classification number: A61B17/072 , A61B5/0537 , A61B5/4839 , A61B5/4878 , A61B17/0686 , A61B17/07207 , A61B18/1445 , A61B90/36 , A61B5/14546 , A61B2017/00026 , A61B2017/07214 , A61B2017/07242 , A61B2017/07285 , A61B34/25 , A61B34/30 , A61B2090/365
Abstract: Tissue irregularity complication(s) may be predicted based on biomarker measurements obtained before a surgery and/or during the surgery via one or more sensing systems. For example, a computing system may monitor the patient biomarker(s) including tissue perfusion pressure, lactate, oxygen saturation, VO2Max, respiration rate, autonomic tone, sweat rate, heart rate variability, skin conductance, GI motility, edema and/or hydration state. Based on the prediction, the computing system may generate a control signal configured to alter a matter in which a surgical cutting and stapling device and/or a surgical energy operate, to adjust a surgical procedure plan, to adjust a surgical instrument selection, indicate a probability of the tissue irregularity complication, and/or to indicate a suggested adjustment to surgical procedure plan, surgical approach, and/or surgical instrument selection.
-
-
-
-
-
-
-
-
-