Abstract:
A mechanical press having a very precise shutheight control system is disclosed. The press includes a bed connected to a frame with a slide connected with the frame for reciprocating motion opposing the bed. The slide and bed together define a shutheight of the press. A drive mechanism is attached to the frame for driving the reciprocating slide, the drive mechanism includes a drive piston and a tie rod. The shutheight control system includes a chamber located between the drive piston and tie rod with a pressurizing mechanism in communication with the chamber for selectively pressurizing the chamber with a predetermined pressure. The pressurizing mechanism causes the tie rod to one of expand and contract to thereby control press shutheight.
Abstract:
A shutheight adjustment system incorporating tie rods and accompanying hydraulic tie rod nut assemblies in connecting a bed to a bolster of a mechanical press for dynamically altering the tensioning of the tie rods. Each hydraulic tie rod nut assembly includes a cylinder with an inner sliding piston threadably engaging the tie rod. A pressurizing mechanism injects pressurized fluid within a chamber formed by the piston and cylinder. By increasing pressure within the chamber of the hydraulic tie rod nut assembly, compression between the press bed and press bolster may be increased, thereby increasing the press shutheight.
Abstract:
An inching drive system for a mechanical press including a hydraulic motor and gear mechanism, that engages the flywheel of the press. The hydraulic motor is mounted for rectilinear movement toward and away from the flywheel for selective engagement therewith and includes a gear that meshes with teeth on the periphery of the flywheel. A separate hydraulic piston/cylinder arrangement moves the inching drive system into and out of engagement with the flywheel.
Abstract:
An apparatus for use in a press machine eliminates the free clearances present between the threaded portions of a screw and adjustment nut assembled in a shutheight adjustment mechanism. A hydraulic assembly directs a pressurized fluid against an outer periphery of the adjustment nut to effectively compress the adjustment nut and cause its threaded portion to be displaced into interlocking engagement with the threaded portion of the screw. Alternatively, the hydraulic assembly may be arranged to hydraulically pressurize an interior space of the screw to effectively expand the screw and cause its threaded portion to be displaced into interlocking engagement with the threaded portion of the adjustment nut.
Abstract:
A mechanical press having a very precise shutheight control system. The press includes a bed connected to a frame with a slide connected with the frame for reciprocating motion opposing the bed. The slide and bed together define a shutheight of the press. A drive mechanism is attached to the frame for driving the reciprocating slide, the drive mechanism includes a drive piston and a tie rod. The shutheight control system includes a chamber located between the drive piston and tie rod with a pressurizing mechanism in communication with the chamber for selectively pressurizing the chamber with a predetermined pressure. The pressurizing mechanism causes the tie rod to one of expand and contract to thereby control press shutheight.