Abstract:
A method of driving a display panel includes generating a gate on voltage, generating first and second gate off voltages based on an external voltage in a first operating mode, and first and second gate off voltages based on the gate on voltage in a second operating mode, generating a clock signal based on the gate on voltage and the second gate off voltage and outputting a gate voltage generated based on the clock signal and the first and second gate off voltages to a gate line of the display panel.
Abstract:
A data driving apparatus includes a horizontal synchronization start signal generation circuit and data driving circuit. The horizontal synchronization start signal generation circuit generates a horizontal synchronization start signal using image data signals. The data driving circuit samples the image data signals in response to the horizontal synchronization start signal and supplies a plurality of data signals using the sampled image data signals in response to a load signal. The horizontal synchronization start signal generation circuit is disabled in response to the load signal.
Abstract:
A method of driving a display panel includes generating a gate on voltage, generating first and second gate off voltages based on an external voltage in a first operating mode, and first and second gate off voltages based on the gate on voltage in a second operating mode, generating a clock signal based on the gate on voltage and the second gate off voltage and outputting a gate voltage generated based on the clock signal and the first and second gate off voltages to a gate line of the display panel.
Abstract:
A gate drive circuit includes a shift register in which plural stages are cascade-connected to each other. In an n-th stage, a pull-up part outputs a high voltage of a clock signal to an output node as a high voltage of an n-th gate signal in response to a high voltage on a first node. A pull-down part pulls the high voltage of the n-th gate signal down to a first low voltage in response to an (n+1)th carry signal. A discharging part discharges the first node to a second low voltage level lower than the first low voltage level in response to the (n+1)th carry signal. A carry part outputs the high voltage of the clock signal as an n-th carry signal (mirroring the n-th gate signal) in response to a high voltage on the first node.
Abstract:
A data driving apparatus includes a horizontal synchronization start signal generation circuit and data driving circuit. The horizontal synchronization start signal generation circuit generates a horizontal synchronization start signal using image data signals. The data driving circuit samples the image data signals in response to the horizontal synchronization start signal and supplies a plurality of data signals using the sampled image data signals in response to a load signal. The horizontal synchronization start signal generation circuit is disabled in response to the load signal.
Abstract:
A liquid crystal display, including: pixels; a signal controller receiving an input image signal and an input control signal and outputting a processing image signal and a control signal; and a data driver changing the processing image signal to data voltage on the basis of the control signal to supply the data voltage to the pixel and sharing charges of odd channel data voltage of an odd channel and even channel data voltage of an even channel which have different polarities on the basis of a temperature.
Abstract:
A display panel includes an amorphous silicon gate driver in which a lower voltage than the gate-off voltage output from the gate driver is applied to an adjacent stage as a low voltage transmission signal.
Abstract:
A display panel includes: gate and data lines; pixels connected to the gate and data lines; and a stage includes: a pull-up driver including an output terminal of the stage and which outputs a gate-on voltage, an output pull-down unit which pulls down an output terminal of the stage, a reset unit which changes a voltage of a second node into a low voltage based on a voltage of the output terminal of the stage, a first node pull-up unit which changes a first node into a high voltage based on a gate-on voltage from a previous stage, a first node pull-down unit which changes the first node into the low voltage based on the gate-on voltage from a subsequent stage, and a first node reset unit which changes the voltage of the first node into the low voltage based on the voltage of the second node.
Abstract:
A display panel includes: gate and data lines; pixels connected to the gate and data lines; and a stage includes: a pull-up driver including an output terminal of the stage and which outputs a gate-on voltage, an output pull-down unit which pulls down an output terminal of the stage, a reset unit which changes a voltage of a second node into a low voltage based on a voltage of the output terminal of the stage, a first node pull-up unit which changes a first node into a high voltage based on a gate-on voltage from a previous stage, a first node pull-down unit which changes the first node into the low voltage based on the gate-on voltage from a subsequent stage, and a first node reset unit which changes the voltage of the first node into the low voltage based on the voltage of the second node.
Abstract:
A gate drive circuit includes a shift register in which plural stages are cascade-connected to each other. In an n-th stage, a pull-up part outputs a high voltage of a clock signal to an output node as a high voltage of an n-th gate signal in response to a high voltage on a first node. A pull-down part pulls the high voltage of the n-th gate signal down to a first low voltage in response to an (n+1)th carry signal. A discharging part discharges the first node to a second low voltage level lower than the first low voltage level in response to the (n+1)th carry signal. A carry part outputs the high voltage of the clock signal as an n-th carry signal (mirroring the n-th gate signal) in response to a high voltage on the first node.