Abstract:
In one aspect, the present invention provides a low power consumption matched filter. The signal received at an input terminal is input to a shift register having stages equal to the spread code length number after conversion into digital signals in an A/D converter. The outputs of the shift register stages are input to XOR circuits set corresponding to each stage, so that XOR operations are performed between the outputs and corresponding spread code bits d1 to dN. The outputs of the XOR circuits are analogously added in an analog adder and output from an output terminal. In another aspect, a filter circuit uses an analog operation circuit to prevent lowered operational accuracy caused by residual charge. Input analog signals successively undergo sampling and holding in sample-and-hold circuits, are multiplied by coefficients stored in a shift register by multiplication circuits, and added in an addition circuit. Sample data transmission error storage is prevented by shifting coefficients in the shift register. Sample-and-hold circuits and multiplication circuits are formed by analog operation circuits, and each include a switch for canceling the residual charge. The sample-and-hold circuits and multiplication circuits normally working are refreshed sequentially by providing circuits for replacing their function. The addition circuit is refreshed in the same way.