摘要:
The invention discloses a pilot-tone signal transmission method and a system thereof. The method includes that at transmitting end, converting physical characteristics of an original pilot-tone signal, and then transmitting the converted pilot-tone signal on an optical fiber; at receiving end, anti-converting physical characteristics of the pilot-tone signal extracted from the optical fiber to recover to the said original pilot-tone signal. The system includes a source device, a target device, an electro-optical converter, optical fibers, an optic-electronic converter, a signal-extracting device, a signal-converting device and a signal-anti-converting device. With the above technical scheme, the invention overcomes carrier/noise ratio limitation, provides better SN ratio performance, and can effectively recover the pilot-tone signal to its original form even the SN ratio condition is worse.
摘要:
An electro-optic conversion module (30) is disclosed, including: an electric interface unit (31) configured to receive multiple electric signals to be converted and transmit each electric signal to be converted to a corresponding electro-optic conversion unit (32); electro-optic conversion units (32) configured to convert the electric signals from the electric interface unit (31) into optical signals; a multiplexer unit (33) configured to multiplex the optical signals from the electro-optic conversion units (32) into a wavelength division multiplexed signal; and an optical interface unit (37). An optic-electro conversion module and the conversion methods are also disclosed in the present disclosure. With the electro-optic conversion module (30), the optic-electro conversion module and the conversion methods of the present disclosure, the electro-optic conversions for multiple electric signals or the optic-electro conversions for multiple optical signals may be achieved in the same module.
摘要:
An electro-optic conversion module (30) is disclosed, including: an electric interface unit (31) configured to receive multiple electric signals to be converted and transmit each electric signal to be converted to a corresponding electro-optic conversion unit (32); electro-optic conversion units (32) configured to convert the electric signals from the electric interface unit (31) into optical signals; a multiplexer unit (33) configured to multiplex the optical signals from the electro-optic conversion units (32) into a wavelength division multiplexed signal; and an optical interface unit (37). An optic-electro conversion module and the conversion methods are also disclosed in the present disclosure. With the electro-optic conversion module (30), the optic-electro conversion module and the conversion methods of the present disclosure, the electro-optic conversions for multiple electric signals or the optic-electro conversions for multiple optical signals may be achieved in the same module.