Abstract:
A vertical field MRI RF coil array for neurovascular imaging includes a head section having a solenoid coil element and a quadrature coil element; a neck section having a solenoid coil element and a quadrature coil element; and a chest section having a solenoid coil element and a quadrature coil element.
Abstract:
A MRI array coil for imaging a human includes a posterior array, an anterior torso array and an anterior head-neck-upper-chest array. The head-neck-upper-chest array has a head portion mountable to the anterior array and a neck-upper-chest portion hingingly attached to the head portion.
Abstract:
A MRI array coil includes a plurality of first coils in a receive coil array and a plurality of second coils in a transmit coil array. The receive coil array and the transmit coil array are electrically disjoint.
Abstract:
A magnetic resonance imaging apparatus includes a magnet assembly (10) for generating a temporally constant primary magnetic field through a central bore (14). The central bore is surrounded by a gradient coil assembly (30) including a dielectric former (32) and gradient coils (34, 36, 38) for generating magnetic field gradient pulses across the examination region. A radio frequency coil assembly (50) including a birdcage coil (52) is mounted inside of the gradient coil assembly and surrounding the examination region. A radio frequency shield (60) includes a dielectric sheet (62) having a plurality of first metal foil strips (72) defined on each surface. The metal strips are defined by etching or cutting gaps (70) in a continuous sheet of copper foil, leaving bridges (74) across the gaps adjacent opposite ends of the foil strips. The foil strips on opposite faces of the dielectric sheet are offset by half the width of one strip such that each strip is capacitively coupled to two strips on the opposite surface. The radio frequency coil induces radio or megahertz frequency eddy currents to which the capacitive coupling appears as a short-circuit, allowing the induced radio frequency currents to pass circumferentially around the shield. The gradient coil assembly induces kilohertz frequency eddy currents to which the capacitive couplings appear as open circuits. The kilohertz eddy currents flow longitudinally along a strip, cross a bridge adjacent one end of the strip, and flow back longitudinally along an adjacent strip, and so forth.
Abstract:
A primary gradient coil assembly (22) is mounted in the inner bore or cylinder (20) of a vacuum dewar (18) that surrounds a superconducting magnet assembly (10). A pair of end ring assemblies, such as electrically conductive lapped segment loops (38) are supported by the gradient coil assembly (22). The end ring segments are capacitively coupled. A plurality of removable radio frequency coil element assemblies (40) are selectively attached to and detached from the gradient coil assembly. Each of the removable RF coil element assembly includes a dielectric housing (50), a longitudinally extending conductor element (52), an electrical connector (44), and circuit components (54) which connects the longitudinal conductor element with the electrical connector. The connector is electrically connected, at radio frequencies, with the ring assembly (38). A mechanical interlock (60) mechanically locks and selectively releases the removable element assemblies (40) to the gradient coil assembly. Sets of different removable element assemblies are provided with different effective radii, i.e. different physical displacements of the electrical conductor elements (52) from the gradient coil assembly, different resonance frequencies, i.e. different reactive elements (58), and the like to adapt the different removable element assemblies for different imaging applications. The removable element assemblies may be completely removed when specialty RF coils, such as a head coil, biplanar gradient coil, or surface coil are used.
Abstract:
A superconducting magnet (10) generates a uniform, static magnetic field through a central bore (12) along its longitudinal or z-axis. A biplanar gradient coil assembly (44) is inserted into the bore to create gradients across the static magnetic field along orthogonal x, y, and z-axes. A biplanar radio frequency coil assembly (50, 80) is inserted into the bore for transmitting radio frequency signals into a subject and receiving magnetic resonance signals from the subject. The radio frequency coil includes a first biplanar coil assembly (50) for generating RF signals in an x-direction and a second biplanar coil assembly (80) for generating RF signals in a y-direction. The two biplanar coil assemblies each include a plurality of conductors (52, 82) along a first plane and a second plurality of conductors (54, 84) along a parallel second plane. The conductors extend parallel to the z-direction. Capacitors (56, 58, 94) are connected in series with each of the conductors in order to control the current flow such that the current flow in each plane is uniform across the plane. The ends of the electrical conductors are connected together (66, 88) such that the current flows are equal and opposite in the two planes. A radio frequency transmitter (136) transmits RF signals to the quadrature biplanar coil assembly. A digital receiver (140) receives and demodulates radio frequency signals from the quadrature coil assembly. The demodulated signals are reconstructed (144) into an image representation for display on a video monitor (146).
Abstract:
An open peripheral vascular coil and method of providing peripheral vascular imaging are provided. The peripheral vascular coil includes a base coil section having a plurality of coil elements and a plurality of coil sections configured for removable attachment to the base coil section. Each of the plurality of coil sections includes a plurality of coil elements.
Abstract:
A system and method for decoupling coils in a medical imaging system are provided. The coil system includes a first coil of a medical imaging system, a second coil of the medical imaging system, and a balun device connected to the first and second coils. The balun device is configured to decouple the first and second coils of the medical imaging system.
Abstract:
A partially parallel acquisition RF coil array for imaging a human head having a summit and a lower portion includes at least a first, a second and a third quadrature coil pair adapted to be arranged circumambiently about the lower portion of the head; and at least a forth, a fifth and a sixth quadrature coil pair adapted to be conformably arranged about the summit of the head.
Abstract:
A detuning circuit for an MRI coil having a series tuning capacitor includes: a detuning inductor and a PIN diode in parallel communication with the tuning capacitor, where the tuning capacitor has a tuning inductor node and a PIN diode node; a first diode and a second diode in parallel communication with the PIN diode, where the first, second and PIN diodes are arranged with the same serial polarity and the first and second diodes have a common node; and a reactance in communication between the common node and the tuning inductor node. The circuit detunes the MRI coil in response to an MRI transmit pulse. A detuning circuit for an MRI coil having a series tuning capacitor includes a detuning inductor; and a detuning switch in parallel combination with a secondary tuning capacitor, the detuning inductor and the parallel combination being in parallel communication with the series tuning capacitor. The secondary tuning capacitor acts to reduce current during detuning of the MRI coil.