Abstract:
A network device includes a processor and a memory communicatively coupled to the processor. The memory stores instructions causing the processor, after execution of the instructions by the processor, to detect the presence of a client connecting to a network and send a packet to the client indicating that access to a Universal Resource Locator (URL) is a prerequisite to the client communicating over the network in response to the client connecting to the network. The packet includes the URL.
Abstract:
A network device includes a processor and a memory communicatively coupled to the processor. The memory stores instructions causing the processor, after execution of the instructions by the processor, to detect the presence of a client connecting to a network and send a packet to the client indicating that access to a Universal Resource Locator (URL) is a prerequisite to the client communicating over the network in response to the client connecting to the network. The packet includes the URL.
Abstract:
Techniques for ownership of an access point are described. An ownership request may be received by a master controller. Ownership of the access point may be determined by the master controller. An ownership response may indicate if a controller shall take ownership of the access point.
Abstract:
To enable a network apparatus to detect L3 roaming users and to take appropriate forwarding actions, L3 knowledge is introduced inside an L2 bridge forwarding table in the network apparatus. As a client moves from a subnet associated with a first network element to a subnet associated with the network apparatus, a determination is made regarding whether the client is roaming by evaluating a source IP address within a L3 packet header within a first frame received at the network apparatus. If, as a result of the evaluating step, it is determined that the client is roaming, the L2 bridge forwarding table is configured to include a source MAC address of the client together with information identifying a destination interface for use in directing client data traffic back towards the subnet associated with the first network element.
Abstract:
Techniques for ownership of an access point are described. An ownership request may be received by a master controller. Ownership of the access point may be determined by the master controller. An ownership response may indicate if a controller shall take ownership of the access point.
Abstract:
A method is provided for generating a broadcast packet at a first device including an address; transmitting the generated broadcast packet to a second device through a first protocol. The first device may communicate with the second device via the transmitted address through a second protocol different from the first protocol. Alternatively, an apparatus is provided to receive an unsolicited broadcast packet including an address through a wireless, close-by communication protocol; extract from the broadcast packet identification information about the remote device; and store the extracted identification information in association with the remote device. Alternatively, a computer-readable medium is provided storing instructions to receive a an unsolicited broadcast packet including an address through a first protocol; extract from the broadcast packet identification information, including the address and a service available at the remote device; and communicate with the remote device via a second protocol.
Abstract:
A method for minimal synchronized network operations includes making an initial connection between a client and a network, the initial connection being made through a first access point managed by a home controller, the home controller recording session information and authentication data for the client. A subsequent connection is made between the client and the network through a second access point managed by a second controller, the subsequent connection being made communicating the session information and authentication data between the home controller and the second controller, without client reauthentication, and without disrupting existing communication.
Abstract:
To enable devices to detect L3 roaming users and to take appropriate forwarding actions, L3 knowledge is introduced inside a bridge in a non-intrusive way. In particular, as a client moves from a subnet associated with a first network element to a subnet associated with a second network element, a determination is made regarding whether the client is roaming. This is done by evaluating a source IP address within a L3 packet header within a first frame received at the second network element. If, as a result of the evaluating step, it is determined that the client is roaming, an L2 bridge forwarding table in the second network element is configured to include a source MAC address of the client together with information identifying at least a destination interface for use in directing client data traffic back towards the subnet associated with the first network element. The first frame is then forwarded. In one embodiment, the traffic is directed back towards the subnet associated with the first network element via a GRE encapsulation tunnel, although any convenient tunneling mechanism can be used. According to another feature, given information cached at the foreign access point is used to enable the roaming client to continue to seamlessly receive inbound traffic prior to or during the configuration of the L2 bridge forwarding table (i.e., before any outbound traffic is actually sent from the client).
Abstract:
A method is provided for generating a broadcast packet at a first device including an address; transmitting the generated broadcast packet to a second device through a first protocol. The first device may communicate with the second device via the transmitted address through a second protocol different from the first protocol. Alternatively, an apparatus is provided to receive an unsolicited broadcast packet including an address through a wireless, close-by communication protocol; extract from the broadcast packet identification information about the remote device; and store the extracted identification information in association with the remote device. Alternatively, a computer-readable medium is provided storing instructions to receive a an unsolicited broadcast packet including an address through a first protocol; extract from the broadcast packet identification information, including the address and a service available at the remote device; and communicate with the remote device via a second protocol.
Abstract:
A method for minimal synchronized network operations includes making an initial connection between a client and a network, the initial connection being made through a first access point managed by a home controller, the home controller recording session information and authentication data for the client. A subsequent connection is made between the client and the network through a second access point managed by a second controller, the subsequent connection being made communicating the session information and authentication data between the home controller and the second controller, without client reauthentication, and without disrupting existing communication.