摘要:
To enable a network apparatus to detect L3 roaming users and to take appropriate forwarding actions, L3 knowledge is introduced inside an L2 bridge forwarding table in the network apparatus. As a client moves from a subnet associated with a first network element to a subnet associated with the network apparatus, a determination is made regarding whether the client is roaming by evaluating a source IP address within a L3 packet header within a first frame received at the network apparatus. If, as a result of the evaluating step, it is determined that the client is roaming, the L2 bridge forwarding table is configured to include a source MAC address of the client together with information identifying a destination interface for use in directing client data traffic back towards the subnet associated with the first network element.
摘要:
To enable a network apparatus to detect L3 roaming users and to take appropriate forwarding actions, L3 knowledge is introduced inside an L2 bridge forwarding table in the network apparatus. As a client moves from a subnet associated with a first network element to a subnet associated with the network apparatus, a determination is made regarding whether the client is roaming by evaluating a source IP address within a L3 packet header within a first frame received at the network apparatus. If, as a result of the evaluating step, it is determined that the client is roaming, the L2 bridge forwarding table is configured to include a source MAC address of the client together with information identifying a destination interface for use in directing client data traffic back towards the subnet associated with the first network element.
摘要:
To enable devices to detect L3 roaming users and to take appropriate forwarding actions, L3 knowledge is introduced inside a bridge in a non-intrusive way. In particular, as a client moves from a subnet associated with a first network element to a subnet associated with a second network element, a determination is made regarding whether the client is roaming. This is done by evaluating a source IP address within a L3 packet header within a first frame received at the second network element. If, as a result of the evaluating step, it is determined that the client is roaming, an L2 bridge forwarding table in the second network element is configured to include a source MAC address of the client together with information identifying at least a destination interface for use in directing client data traffic back towards the subnet associated with the first network element. The first frame is then forwarded. In one embodiment, the traffic is directed back towards the subnet associated with the first network element via a GRE encapsulation tunnel, although any convenient tunneling mechanism can be used. According to another feature, given information cached at the foreign access point is used to enable the roaming client to continue to seamlessly receive inbound traffic prior to or during the configuration of the L2 bridge forwarding table (i.e., before any outbound traffic is actually sent from the client).
摘要:
A fast roaming (handoff) service is provided for a WLAN infrastructure. A given mobile station (STA) obtains a pairwise master key (PMK) when it associates with an access point (AP) in the infrastructure. A neighbor graph identifies prospective APs to which the STA may then roam. At initialization, preferably the neighbor graph is fully-connected (i.e., each AP is assumed to be connected to every other AP). The PMK (obtained by the STA initially) is shared proactively with the neighbor APs as indicated in the neighbor graph. Thus, when the STA roams to a neighbor AP, because the PMK is already available, there is no requirement that the STA initiate a real-time request to an authentication server to re-associate to the new AP. Further, the new AP causes an update to the neighbor graph information implicitly by simply issuing a notification that it is now handling the STA that arrived from the prior AP; in this manner, the prior AP is confirmed as a neighbor, but there is no requirement for any inter-AP dialog before a given neighbor graph is updated. As roaming occurs the neighbor graph is pruned down (to reflect the actual neighbor AP connections) using the implicit notification data.