Abstract:
A wiping method for wiping a nozzle surface of a liquid discharge head includes the step of relatively moving the liquid discharge head and a wiper impregnated with a cleaning fluid. The cleaning fluid contains a lactone compound in an amount of 5% by mass or more. The wiper includes a first layer configured to contact the nozzle surface and one or more layers other than the first layer. The first layer has a thickness of t1, the one or more layers other than the first layer have a total thickness of t2, and t1 is smaller than t2. A void ratio of the first layer is smaller than a void ratio of at least one of the one or more layers other than the first layer.
Abstract:
A wiping method for wiping a nozzle surface of a liquid discharge head includes the step of relatively moving the liquid discharge head and a wiper impregnated with a cleaning fluid. The cleaning fluid contains a lactone compound in an amount of 5% by mass or more. The wiper includes a first layer configured to contact the nozzle surface and one or more layers other than the first layer. The first layer has a thickness of t1, the one or more layers other than the first layer have a total thickness of t2, and t1 is smaller than t2. A void ratio of the first layer is smaller than a void ratio of at least one of the one or more layers other than the first layer.
Abstract:
A cleaning blade includes a support and an elastic member with a flat shape. The elastic member has a secured end secured to the support and a free end. A ridgeline of the free end contacts a cleaning target to remove substances adhering to a surface of the cleaning target. The elastic member includes a base and a surface layer made of a cured product of a curable composition. The surface layer is disposed on at least a part of an opposite face disposed to oppose a downstream side of the cleaning target downstream from a contact portion of the elastic member with the cleaning target in a direction of movement of the cleaning target. A thickness of the surface layer progressively decreases toward the secured end along a cross section perpendicular to a longitudinal direction of the surface layer.
Abstract:
A cleaning blade includes a support and an elastic member with a flat shape. The elastic member has a secured end secured to the support and a free end. A ridgeline of the free end contacts a cleaning target to remove substances adhering to a surface of the cleaning target. The elastic member includes a base and a surface layer made of a cured product of a curable composition. The surface layer is disposed on at least a part of an opposite face disposed to oppose a downstream side of the cleaning target downstream from a contact portion of the elastic member with the cleaning target in a direction of movement of the cleaning target. A thickness of the surface layer progressively decreases toward the secured end along a cross section perpendicular to a longitudinal direction of the surface layer.
Abstract:
A cleaning blade includes an elastic member including a contact portion to contact the surface of a member to be cleaned and remove an extraneous matter adhering to the surface of the member. The contact portion includes a modified portion including at least one of an impregnated portion including a first cured material formed of a first curing composition in a thickness direction from the surface of the contact portion; and a surface layer formed of a second curing composition on the surface of the contact portion. The surface of the modified portion has a tack maximum value not greater than 3.0 [gf/mm2].
Abstract:
Provided is a cleaning blade including an elastic member configured to abut on a surface of a cleaning target member and remove residual material deposited thereon, wherein elastic member satisfies requirements a to c below, a. an abutment part of the elastic member to abut on the surface of the cleaning target member has a reformed layer, b. Martens hardness at a surface of the reformed layer is from 1.5 to 15 N/mm2, and c. a relationship H/L between maximum Martens hardness H among Martens hardnesses H in a region inward from the abutment part thicknesswise and distance L from the surface of the reformed layer is from 0.010 to 0.2 (N/mm2·1/μm), where distance L represents minimum distance among distances to the surface of the reformed layer, from positions at which a measured Martens hardness and a measured elastic power are equal to those of the elastic member.
Abstract:
A cleaning blade'includes an elastic member including a contact portion to contact the surface of a member to be cleaned and remove an extraneous matter adhering to the surface of the member. The contact portion includes a modified portion including at least one of an impregnated portion including a first cured material formed of a first curing composition in a thickness direction from the surface of the contact portion; and a surface layer formed of a second curing composition on the surface of the contact portion. The surface of the modified portion has a tack maximum value not greater than 3.0 [gf/mm2],
Abstract:
An image forming apparatus is provided which includes an image bearer, a charger to charge the image bearer, a latent image forming device to form an electrostatic latent image on the image bearer, a developing device to develop the electrostatic latent image with a toner, a transfer device to transfer the toner image onto a transfer medium, and a cleaning blade to remove residual toner particles remaining on the image bearer. The toner includes a binder resin and a release agent. The release agent has a longest length Lmax in the toner, which is equal to or greater than 1.1 times a maximum Feret diameter Df of the toner. The cleaning blade includes a strip-like elastic body blade having a contact part with the image bearer. The contact part includes a cured product of an ultraviolet curable composition including an acrylate or methacrylate compound having an alicyclic structure.
Abstract:
A cleaning blade, including: rectangular elastic body blade containing cured first-UV-curable resin at tip ridgeline portion thereof, brought into contact with surface of to-be-cleaned member, the cured first-UV-curable resin being formed by impregnating the tip ridgeline portion with the first-UV-curable resin, followed by curing, and depth of the elastic body blade impregnated with the first-UV-curable resin from edge surface thereof is 50 μm-150 μm, wherein the elastic body blade contains surface layer containing cured second-UV-curable resin at the edge surface, wherein load-displacement curve of Martens hardness thereof has inflection points, and is obtained by pressing region of the surface layer thereof via resin particles having average particle diameter of 5 μm-10 μm, and distance of the region from the tip ridgeline portion is 0.5 mm or less, and wherein ratio of displacement at the inflection point, with which load is maximum, to the average particle diameter is 1.5-2.0.
Abstract:
A cleaning blade cleaning the surface of an object includes a rigid holder; and a strip-shaped elastic body fixed on the holder, including a tip ridgeline to contact the surface of the object. The cleaning blade includes a part having a Martens hardness of from 0.9 to 5.0 N/mm2 at a depth of 20 μm from an undersurface of the blade including the ridgeline, 0.3 to 0.8 N/mm2 at a depth of 40 μm therefrom, and the Martens hardness at a depth of 20 μm therefrom larger than that at a depth of 40 μm therefrom by 0.6 N/mm2.
Abstract translation:清洁物体表面的清洁刀片包括刚性保持器; 以及固定在所述保持器上的带状弹性体,其包括与所述物体的表面接触的尖端棱线。 清洁刮板包括从包括棱线的叶片的下表面开始的深度为20μm至20μm的马氏体硬度为0.9至5.0N / mm 2的部分,其深度为40μm时为0.3至0.8N / mm 2, 其深度为20μm的马氏体硬度比其深度为40μm的马氏硬度大0.6N / mm 2。