Abstract:
An organic light emitting diode (OLED) device and a method of manufacturing the same, the OLED device including a substrate, a first electrode on the substrate, a buffer layer on the first electrode, an emission layer on the buffer layer, and a second electrode on the emission layer, wherein the buffer layer includes a transparent conductive oxide, and a metal or metal oxide having a work function lower than a work function of the transparent conductive oxide.
Abstract:
An organic light emitting diode (OLED) including: a substrate; a reflection layer on the substrate and including metal; a first electrode on the reflection layer and including a light transparent aluminum zinc oxide (AZO); an organic layer on the first electrode and including an emitting layer; and a second electrode on the organic layer and including a semi-transparent reflection layer.
Abstract:
In one aspect, a cathode including the first metal layer, the transparent conductive layer formed on the first metal layer, and the second metal layer formed on the transparent conductive layer is applied to the organic light emitting device and thicknesses of the first metal layer, the transparent conductive layer, and the second metal layer are controlled so that the external light reflection of the organic light emitting device is prevented. The cathode may further include the third metal layer formed on the second metal layer.
Abstract:
The present invention is to provide an organic light emitting display and a method of manufacturing the same. The light emitting display according to the present invention includes: a first substrate on which a plurality of light emitting devices having first electrodes, organic light emitting layers, and second electrodes are disposed; a second substrate disposed to face the first substrate; a dam member disposed between the first substrate and the second substrate to surround the plurality of light emitting devices; an inorganic sealing material disposed between the first substrate and the second substrate in an outer area of the dam member and attaching the first substrate to the second substrate; and a silicon filling material provided between the first substrate and the second substrate inward of the dam member to be in contact with the second electrodes.
Abstract:
A manufacturing method of an OLED display is provided. The method includes: forming an organic emission layer and a thin film encapsulation layer covering the organic emission layer on a substrate including a pixel area and a peripheral area; adhering a laminating film including a plurality of adhesive layers and an upper protective layer that covers an upper adhesive layer from among the adhesive layers on the thin film encapsulation layer, a lower adhesive layer from among the adhesive layers contacting the thin film encapsulation layer; radiating UV light on the laminating film that corresponds to the peripheral area of the substrate to decrease adhesion between the lower adhesive layer and the thin film encapsulation layer corresponding to the peripheral area; and peeling the laminating film corresponding to the peripheral area from the thin film encapsulation layer to maintain the laminating film that corresponds to the pixel area.
Abstract:
An organic light emitting device is provided that includes: an anode including an anode material and for injecting holes; an organic layer including a light emitting layer on the anode; and a cathode on the organic layer and through which light emitted from the light emitting layer passes, wherein the cathode includes: a buffer layer, a metal oxide layer including a metal oxide, and a metal layer including a metal having an absolute work function value lower than an absolute work function value of the anode material and coupled to the buffer layer and the metal oxide layer.
Abstract:
Provided is an organic light-emitting display apparatus with improved contrast. The organic light-emitting display apparatus includes: a substrate; an organic light-emitting device on the substrate, the organic light-emitting device including a first electrode, a second electrode, and an organic light-emitting layer between the first electrode and the second electrode; and a pixel define layer on the first electrode, the pixel define layer including an opening through which the first electrode is exposed and having a black color, wherein the organic light-emitting layer and the second electrode are sequentially disposed on a portion of the first electrode exposed through the opening, and the second electrode includes indium oxide doped with a metal or metal oxide.
Abstract:
An organic light emitting diode device includes a first electrode, a second electrode, and an emission layer disposed between the first and second electrodes. The first electrode includes a first layer and a second layer. The first layer includes ytterbium (Yb), samarium (Sm), lanthanum (La), yttrium (Y), calcium (Ca), strontium (Sr), cesium (Cs), ruthenium (Ru), barium (Ba), or a combination thereof and having a thickness ranging from about 40 to 200 Å. The second layer includes silver (Ag), aluminum (Al), copper (Cu), chromium (Cr), or a combination thereof and having a thickness ranging from about 100 to 250 Å.
Abstract:
A flat panel display apparatus with reduced reflection of external light incident on the flat panel display apparatus. The flat panel display apparatus includes a substrate, a porous layer disposed on the substrate, and a plurality of display devices disposed on the substrate. Here, the porous layer is adapted to diffusedly reflect external light and/or to increase viewing angle of the flat panel display apparatus.
Abstract:
An organic light emitting device including a substrate on which an organic light emitting unit is formed, wherein the organic light emitting unit sequentially includes a first electrode, an organic layer, and a second electrode; and a passivation layer covering the substrate and the second electrode, and a method of manufacturing the organic light emitting device.