Abstract:
Provided is preparation of poly(alkylene carbonate) by alternating copolymerization of carbon dioxide and epoxide. To be specific, provided are a method for preparing block or graft copolymers of the polymer compound and poly(alkylene carbonate) by alternating-copolymerization of an epoxide compound and carbon dioxide by using a metal (III) compound prepared from salen-type ligand with a quaternary ammonium salt as a catalyst in the presence of a polymer compound having a functional group of hydroxyl or carboxylic acid, and block or graft copolymers prepared by the method.
Abstract:
Disclosed is a polymer electrolyte composition, a gel-type polymer electrolyte obtained by mixing the same at normal temperature, and a dye-sensitized solar cell containing the electrolyte. Since the poly(alkylene carbonate)-based polymer is included, a crosslinking process by radiation of heat or UV is not required when the polymer electrolyte is manufactured, such that a manufacturing process is simple. Accordingly, the polymer electrolyte is useful for mass production of a solar cell and maintained in a uniform state without a phase separation between two components due to excellent affinity between the polymer and the organic solvent included in the electrolyte, and has excellent electrode-electrolyte interface property in the solar cell due to an adhesive property of the gelled polymer electrolyte.
Abstract:
Provided is preparation of poly(alkylene carbonate) by alternating copolymerization of carbon dioxide and epoxide. To be specific, provided are a method for preparing block or graft copolymers of the polymer compound and poly(alkylene carbonate) by alternating-copolymerization of an epoxide compound and carbon dioxide by using a metal (III) compound prepared from salen-type ligand with a quaternary ammonium salt as a catalyst in the presence of a polymer compound having a functional group of hydroxyl or carboxylic acid, and block or graft copolymers prepared by the method.
Abstract:
Disclosed is a polymer electrolyte composition, a gel-type polymer electrolyte obtained by mixing the same at normal temperature, and a dye-sensitized solar cell containing the electrolyte. Since the poly(alkylene carbonate)-based polymer is included, a crosslinking process by radiation of heat or UV is not required when the polymer electrolyte is manufactured, such that a manufacturing process is simple. Accordingly, the polymer electrolyte is useful for mass production of a solar cell and maintained in a uniform state without a phase separation between two components due to excellent affinity between the polymer and the organic solvent included in the electrolyte, and has excellent electrode-electrolyte interface property in the solar cell due to an adhesive property of the gelled polymer electrolyte.
Abstract:
Provided is a method for preparing poly(alkylene carbonate) containing ether linkages, by the copolymerization of an epoxy compound and carbon dioxide, with a trivalent metal complex prepared from a salen type ligand containing a quaternary ammonium salt, and a double metal cyanide (DMC) catalyst together. The amount of ether linkages can be controlled by regulating the weight ratio of two catalysts and the carbon dioxide pressure.
Abstract:
There is provided a method for preparing a low-molecular weight poly(alkylene carbonate) of which the molecular weight and chain shape are precisely controlled, by introducing a phosphorous compound having a hydroxyl group as a chain transfer agent in order to regulate the molecular weight, in alternating copolymerizing an epoxide compound and carbon dioxide by using trivalent metal complex prepared from a Salen type ligand containing a quaternary ammonium salt, and a polymer prepared by the method.Since poly(alkylene carbonate) prepared according to the present invention includes a phosphate or phosphonate group in the polymer chain, it has flame-retarding property.
Abstract:
There is provided a method for preparing a low-molecular weight poly(alkylene carbonate) of which the molecular weight and chain shape are precisely controlled, by introducing a phosphorous compound having a hydroxyl group as a chain transfer agent in order to regulate the molecular weight, in alternating copolymerizing an epoxide compound and carbon dioxide by using trivalent metal complex prepared from a Salen type ligand containing a quaternary ammonium salt, and a polymer prepared by the method.Since poly(alkylene carbonate) prepared according to the present invention includes a phosphate or phosphonate group in the polymer chain, it has flame-retarding property.
Abstract:
Provided is a method for preparing poly(alkylene carbonate) containing ether linkages, by the copolymerization of an epoxy compound and carbon dioxide, with a trivalent metal complex prepared from a salen type ligand containing a quaternary ammonium salt, and a double metal cyanide (DMC) catalyst together. The amount of ether linkages can be controlled by regulating the weight ratio of two catalysts and the carbon dioxide pressure.
Abstract:
A dinuclear transition metal compound of Formula 1 is provided: where R1, R2, R3, R4, R5, R, L, A, B, X, M, z, and n are the same as in the description of the present invention. The dinuclear transition metal compound includes two transition metal compounds connected each other by a bridging group so that a decrease in catalyst activation due to a polar functional group can be prevented. A catalyst composition including the dinuclear transition metal compound is highly active for a monomer having a polar functional group.
Abstract:
A dinuclear transition metal compound of Formula 1 is provided: where R1, R2, R3, R4, R5, R, L, A, B, X, M, z, and n are the same as in the description of the present invention. The dinuclear transition metal compound includes two transition metal compounds connected each other by a bridging group so that a decrease in catalyst activation due to a polar functional group can be prevented. A catalyst composition including the dinuclear transition metal compound is highly active for a monomer having a polar functional group.