Abstract:
The embodiments of the present invention disclose a broadband-narrowband combining board in an integrated access apparatus, which includes a broadband processing module, a narrowband processing module and a separator module, wherein the broadband processing module, the narrowband processing module and the separator module are removably connected to a connector. The embodiments of the present invention also disclose an apparatus including a broadband-narrowband combining board. The broadband-narrowband combining board in accordance with the embodiments of the present invention may be configured according to the demands of subscribers, which brings more flexibility and convenience to the application of the broadband-narrowband combining board.
Abstract:
A receiving apparatus is provided, which includes: a photoelectric detector (PD), adapted to generate current signals according to optical signals projected on the PD and digitally modulated at a high or low rate; a first switch, adapted to switch to output the high-rate or low-rate current signals; a first transimpedance amplifier (TIA), adapted to amplify the high-rate current signals into high-rate voltage signals; and a second TIA, adapted to amplify the received low-rate current signals into low-rate voltage signals. Therefore, in the present invention, high-rate and low-rate receiving paths are completely separated. This provides signals with good quality and avoids signal deterioration; and switching between the high-rate and low-rate receiving paths simplifies the structure and lowers costs.
Abstract:
A method for sending data from a transmitter to a receiver in a transmission network comprising receiving outgoing data that is eight-bits-ten-bits (8b10b) encoded at a Gigabit Ethernet (GE) line rate from a physical medium attachment (PMA) layer, 8b10b decoding the received outgoing data, 64-bits-to-66-bits (64b66b) encoding the 8b10b decoded outgoing data, forward error correction (FEC) encoding the 64b66b encoded outgoing data, and serializing and sending the 64b66b and FEC encoded outgoing data at the GE line rate to a physical medium dependent (PMD) layer.
Abstract:
A receiving apparatus is provided, which includes: a photoelectric detector (PD), adapted to generate current signals according to optical signals projected on the PD and digitally modulated at a high or low rate; a first switch, adapted to switch to output the high-rate or low-rate current signals; a first transimpedance amplifier (TIA), adapted to amplify the high-rate current signals into high-rate voltage signals; and a second TIA, adapted to amplify the received low-rate current signals into low-rate voltage signals. Therefore, in the present invention, high-rate and low-rate receiving paths are completely separated. This provides signals with good quality and avoids signal deterioration; and switching between the high-rate and low-rate receiving paths simplifies the structure and lowers costs.
Abstract:
A method for sending data from a transmitter to a receiver in a transmission network comprising receiving outgoing data that is eight-bits-ten-bits (8b10b) encoded at a Gigabit Ethernet (GE) line rate from a physical medium attachment (PMA) layer, 8b10b decoding the received outgoing data, 64-bits-to-66-bits (64b66b) encoding the 8b10b decoded outgoing data, forward error correction (FEC) encoding the 64b66b encoded outgoing data, and serializing and sending the 64b66b and FEC encoded outgoing data at the GE line rate to a physical medium dependent (PMD) layer.
Abstract:
An apparatus comprising a wavelength division multiplexing (WDM) coupler configured to couple an optical line terminal (OLT) comprising a transmitter and a receiver, wherein the WDM coupler is coupled to the transmitter via a first fiber and to the receiver via a second fiber. An apparatus comprising a WDM coupler for a passive optical network (PON) comprising a plurality of filters and a plurality of ports, wherein the WDM coupler comprises fewer filters than ports. A method comprising receiving a downstream optical signal intended for an optical network terminal (ONT) via a first fiber, and transmitting an upstream optical signal received from the ONT via a second fiber.
Abstract:
An apparatus comprising a wavelength division multiplexing (WDM) coupler configured to couple an optical line terminal (OLT) comprising a transmitter and a receiver, wherein the WDM coupler is coupled to the transmitter via a first fiber and to the receiver via a second fiber. An apparatus comprising a WDM coupler for a passive optical network (PON) comprising a plurality of filters and a plurality of ports, wherein the WDM coupler comprises fewer filters than ports. A method comprising receiving a downstream optical signal intended for an optical network terminal (ONT) via a first fiber, and transmitting an upstream optical signal received from the ONT via a second fiber.