Abstract:
A three-dimensional (3D) printing system for manufacturing a three-dimensional article includes a resin vessel for containing a volume of photocurable resin having a resin upper surface, an imaging system configured to define a build plane, a build plate having a build plate upper surface, a build plate positioner, a sensor configured to generate a signal indicative of a fluid-related vertical position of one or more of the resin upper surface and a component of a volume compensator (VC), and a controller. The controller is configured to (1) operate the build plate positioner to vertically translate build plate upper surface, (2) concurrent with operating the build plate positioner, receiving the signal from the sensor, (3) analyze the signal to determine a build plate geometric signature, and (4) determine or suspend a build plan for building the 3D article based upon the determined geometric signature.
Abstract:
Thermoplastic 3D objects are printed directly onto permeable materials with a high strength bond. The 3D object can be attached to the permeable material at one side where the bottom layer of the 3D object can be attached to the permeable material or alternatively, at an internal layer where portions of the 3D object are on opposite sides of the permeable material. In order to improve the adhesion of the 3D object to the permeable material, the bonding layer of the liquid thermoplastic material that is printed directly onto the permeable material can be deposited at modified 3D printer settings that can include a hotter than normal material deposition temperature. Additional build layers of the liquid thermoplastic material are printed on the bonding layer to complete the 3D objects.
Abstract:
Thermoplastic 3D objects are printed directly onto permeable materials with a high strength bond. The 3D object can be attached to the permeable material at one side where the bottom layer of the 3D object can be attached to the permeable material or alternatively, at an internal layer where portions of the 3D object are on opposite sides of the permeable material. In order to improve the adhesion of the 3D object to the permeable material, the bonding layer of the liquid thermoplastic material that is printed directly onto the permeable material can be deposited at modified 3D printer settings that can include a hotter than normal material deposition temperature. Additional build layers of the liquid thermoplastic material are printed on the bonding layer to complete the 3D objects.
Abstract:
A three dimensional printing system includes a controller that is configured to (1) receive an incoming slice data array that defines an initial two dimensional object having an initial outer boundary; (2) process the incoming slice data array to define a simple outer boundary whereby if the object has two portions defining a channel therebetween, the channel is reduced or eliminated thereby reducing a perimeter of the outer boundary. In one embodiment the object is two objects. If the channel is defined between the two objects, then the processing merges the two objects. If the channel is a concave recess within one object, then the processing reduces the depth of or eliminates the concave recess.
Abstract:
A three-dimensional (3D) printing system for manufacturing a three-dimensional article includes a resin vessel for containing a volume of photocurable resin having a resin upper surface, an imaging system configured to define a build plane, a build plate having a build plate upper surface, a build plate positioner, a sensor configured to generate a signal indicative of a fluid-related vertical position of one or more of the resin upper surface and a component of a volume compensator (VC), and a controller. The controller is configured to (1) operate the build plate positioner to vertically translate build plate upper surface, (2) concurrent with operating the build plate positioner, receiving the signal from the sensor, (3) analyze the signal to determine a build plate geometric signature, and (4) determine or suspend a build plan for building the 3D article based upon the determined geometric signature.
Abstract:
Thermoplastic 3D objects are printed directly onto permeable materials with a high strength bond. The 3D object can be attached to the permeable material at one side where the bottom layer of the 3D object can be attached to the permeable material or alternatively, at an internal layer where portions of the 3D object are on opposite sides of the permeable material. In order to improve the adhesion of the 3D object to the permeable material, the bonding layer of the liquid thermoplastic material that is printed directly onto the permeable material can be deposited at modified 3D printer settings that can include a hotter than normal material deposition temperature. Additional build layers of the liquid thermoplastic material are printed on the bonding layer to complete the 3D objects.
Abstract:
Thermoplastic 3D objects are printed directly onto permeable materials with a high strength bond. The 3D object can be attached to the permeable material at one side where the bottom layer of the 3D object can be attached to the permeable material or alternatively, at an internal layer where portions of the 3D object are on opposite sides of the permeable material. In order to improve the adhesion of the 3D object to the permeable material, the bonding layer of the liquid thermoplastic material that is printed directly onto the permeable material can be deposited at modified 3D printer settings that can include a hotter than normal material deposition temperature. Additional build layers of the liquid thermoplastic material are printed on the bonding layer to complete the 3D objects.
Abstract:
A three dimensional printing system includes a controller that is configured to (1) receive an incoming slice data array that defines an initial two dimensional object having an initial outer boundary; (2) process the incoming slice data array to define a simple outer boundary whereby if the object has two portions defining a channel therebetween, the channel is reduced or eliminated thereby reducing a perimeter of the outer boundary. In one embodiment the object is two objects. If the channel is defined between the two objects, then the processing merges the two objects. If the channel is a concave recess within one object, then the processing reduces the depth of or eliminates the concave recess.