Abstract:
A transdermal drug delivery composition comprises an acrylate copolymer and from about 8% to about 30% by weight fentanyl. A transdermal fentanyl delivery composition comprising methyl laurate or tetraglycol as a permeation enhancer is also provided. The transdermal drug delivery compositions can be used to make a transdermal drug delivery device for the delivery of fentanyl.
Abstract:
A transdermal drug delivery composition comprises an acrylate copolymer and from about 8% to about 30% by weight fentanyl. A transdermal fentanyl delivery composition comprising methyl laurate or tetraglycol as a permeation enhancer is also provided. The transdermal drug delivery compositions can be used to make a transdermal drug delivery device for the delivery of fentanyl.
Abstract:
A transdermal drug delivery composition comprises an acrylate copolymer and from about 8% to about 30% by weight fentanyl. A transdermal fentanyl delivery composition comprising methyl laurate or tetraglycol as a permeation enhancer is also provided. The transdermal drug delivery compositions can be used to make a transdermal drug delivery device for the delivery of fentanyl.
Abstract:
A transdermal drug delivery composition comprises an acrylate copolymer and from about 8% to about 30% by weight fentanyl. A transdermal fentanyl delivery composition comprising methyl laurate or tetraglycol as a permeation enhancer is also provided. The transdermal drug delivery compositions can be used to make a transdermal drug delivery device for the delivery of fentanyl.
Abstract:
A transdermal drug delivery composition comprises an acrylate copolymer and from about 8% to about 30% by weight fentanyl. A transdermal fentanyl delivery composition comprising methyl laurate or tetraglycol as a permeation enhancer is also provided. The transdermal drug delivery compositions can be used to make a transdermal drug delivery device for the delivery of fentanyl.
Abstract:
A transdermal adhesive patch assembly and method of using same. The assembly can include a backing, and an adhesive and a matrix coupled to the backing. The matrix can include an active ingredient. The assembly can further include a microneedle array in at least partially overlapping relationship with the matrix; and a carrier that couples the microneedle array to the matrix opposite the backing, wherein the carrier and the microneedle array form a skin treatment assembly that, along with the matrix, can be located on a flap. The method can include adhering at least a portion of the adhesive to skin to form an anchor; applying pressure adjacent the microneedle array to treat an area of the skin; moving the flap away from the skin; removing the skin treatment assembly to expose the matrix; and replacing the flap to position the matrix over the treated area of the skin.
Abstract:
A transdermal drug delivery composition comprises an acrylate copolymer and from about 8% to about 30% by weight fentanyl. A transdermal fentanyl delivery composition comprising methyl laurate or tetraglycol as a permeation enhancer is also provided. The transdermal drug delivery compositions can be used to make a transdermal drug delivery device for the delivery of fentanyl.
Abstract:
The present disclosure provides a low-profile system and methods for delivering a microneedle array. The delivery system includes a housing that may be secured to and temporarily worn on a patient's skin. A carrier assembly coupled to a microneedle array is received in the housing proximate an applicator device. The carrier assembly is at least releasably secured to the housing and it is typically not attached or otherwise fixed to any portion of the applicator device.
Abstract:
A transdermal drug delivery composition comprises an acrylate copolymer and from about 8% to about 30% by weight fentanyl. A transdermal fentanyl delivery composition comprising methyl laurate or tetraglycol as a permeation enhancer is also provided. The transdermal drug delivery compositions can be used to make a transdermal drug delivery device for the delivery of fentanyl.
Abstract:
The present disclosure provides low-profile systems and methods for delivering a microneedle array. A delivery system includes a housing that may be secured to and temporarily worn on a patient's skin. A carrier assembly coupled to a microneedle array is received in the housing proximate a stored energy device. The stored energy device can be designed to store a predetermined amount of potential energy that is greater or substantially greater than the energy necessary to release said energy. As the stored energy device is potentially capable of releasing substantially more energy than is required to cause the release, the amount of normal force applied to the skin can be minimized while sufficient application velocity is still generated.