Abstract:
An adhesive composite dressing useful for applying an active ingredient to a treated skin site, as well as methods of manufacture and use of such dressings. In one embodiment, an adhesive composite dressing comprising an anchor member, a target member, and a folding member, where the anchor member comprises a first skin-contact adhesive, the target member comprises an opening adapted to enable skin treatment, the folding member comprises a drug reservoir, and where the folding member is attached to the anchor portion through a hinge defined by a line of attachment that is not contiguous with an edge of the anchor member.
Abstract:
Various embodiments described herein relate to a laminate. The laminate includes a release liner comprising at least one polyolefin and an adhesive layer. The adhesive layer contacts a region of a first major surface of the release liner. Upon exposure to laser electromagnetic radiation, the adhesive layer is configured to absorb at least 55% (in some embodiments, at least 60%, 65%, 70%, 75%, 80%, 85%, 90%, 95%, or even 100%) of the laser electromagnetic radiation and the release liner absorbs no greater than 45% (in some embodiments, no greater than 40%, 35%, 30%, 25%, 20%, 15%, 10%, 5%, or even 0%) of the laser electromagnetic radiation.
Abstract:
A transdermal adhesive patch assembly and method of using same. The assembly can include a backing, and an adhesive and a matrix coupled to the backing. The matrix can include an active ingredient. The assembly can further include a microneedle array in at least partially overlapping relationship with the matrix; and a carrier that couples the microneedle array to the matrix opposite the backing, wherein the carrier and the microneedle array form a skin treatment assembly that, along with the matrix, can be located on a flap. The method can include adhering at least a portion of the adhesive to skin to form an anchor; applying pressure adjacent the microneedle array to treat an area of the skin; moving the flap away from the skin; removing the skin treatment assembly to expose the matrix; and replacing the flap to position the matrix over the treated area of the skin.
Abstract:
The present invention is an adhesive delivery system including a conformable film having top and bottom faces, an adhesive releasably coated on at least a portion of the top face of the conformable film, and a light release liner adhered to the adhesive side opposite the conformable film.
Abstract:
A transdermal adhesive patch assembly and method of using same. The assembly can include a backing, and an adhesive and a matrix coupled to the backing. The matrix can include an active ingredient. The assembly can further include a microneedle array in at least partially overlapping relationship with the matrix; and a carrier that couples the microneedle array to the matrix opposite the backing, wherein the carrier and the microneedle array form a skin treatment assembly that, along with the matrix, can be located on a flap. The method can include adhering at least a portion of the adhesive to skin to form an anchor; applying pressure adjacent the microneedle array to treat an area of the skin; moving the flap away from the skin; removing the skin treatment assembly to expose the matrix; and replacing the flap to position the matrix over the treated area of the skin.
Abstract:
An adhesive composite dressing useful for applying an active ingredient to a treated skin site, as well as methods of manufacture and use of such dressings. In one embodiment, an adhesive composite dressing comprising an anchor member, a target member, and a folding member, where the anchor member comprises a first skin-contact adhesive, the target member comprises an opening adapted to enable skin treatment, the folding member comprises a drug reservoir, and where the folding member is attached to the anchor portion through a hinge defined by a line of attachment that is not contiguous with an edge of the anchor member.