CURABLE QUANTUM DOT COMPOSITIONS AND ARTICLES

    公开(公告)号:US20190016952A1

    公开(公告)日:2019-01-17

    申请号:US16066604

    申请日:2016-12-20

    Abstract: Article comprising composite particles in an organic polymer matrix comprising a cured thiol-alkene resin having a Tg>20° C., the composite particles comprising a hydrophobic nonmetallic inorganic matrix, ligands, and quantum dots, wherein the hydrophobic nonmetallic inorganic matrix is present in the composite particles in an amount of up to 40 volume percent. Exemplary articles described herein can be made for use for display applications such as films, LED caps, LED coatings, LED lenses, and light guides. Exemplary articles described herein can be made for use for non-display applications such as security applications where quantum dot phosphors are used to provide fluorescence at selected or tailored wavelengths. In such uses, the organic polymer matrix could be a label or a coating on a label, or other articles such as a card or tag.

    OPTICAL CAMOUFLAGE FILTERS
    4.
    发明申请

    公开(公告)号:US20220146725A1

    公开(公告)日:2022-05-12

    申请号:US17583553

    申请日:2022-01-25

    Abstract: A system may include one or both of a light emitter and a light receiver, and an optical filter. The optical filter includes a wavelength selective scattering layer. The wavelength selective scattering layer may have a near-infrared scattering ratio of less than about 0.9. The filter may have a visible reflective haze ratio of greater than about 0.5. A method may include disposing the wavelength selective scattering layer adjacent one or both of the light emitter and the light receiver. The optical filter may include a wavelength selective reflective layer. The optical filter may include a wavelength selective absorbing layer. An article may include the optical filter. The wavelength selective scattering layer may have an average near-infrared scattering of less than 60%, an average visible scattering of greater than 10%, and a difference between the % total visible reflectance and the % diffuse visible reflectance of less than 20.

    COLOR COMPENSATING OPTICAL FILTERS
    5.
    发明申请

    公开(公告)号:US20190339432A1

    公开(公告)日:2019-11-07

    申请号:US16475207

    申请日:2018-01-03

    Abstract: Example systems may include one or both of a light emitter and a light receiver, and an optical filter. The optical filter may include a wavelength selective scattering layer configured to scatter visible light. The optical filter may include a wavelength selective reflecting layer having a predetermined transmission band configured to compensate for a color deviation. The optical filter may include a broadband reflecting layer having a predetermined reflection band configured to compensate for a color deviation. The optical filter may include a low-index layer configured to reduce a color deviation in light emitted by the light emitter or received by the light receiver. The wavelength selective scattering layer may include nanoparticles dispersed in a binder, wherein the ratio of the nanoparticles to the binder by weight is at least 50%. Example articles may include example optical filters.

    OPTICAL SYSTEMS AND OPTICAL FILTERS
    7.
    发明公开

    公开(公告)号:US20240288614A1

    公开(公告)日:2024-08-29

    申请号:US18656731

    申请日:2024-05-07

    Abstract: An optical system includes a multilayer optical film configured to block transmission of visible light but allow peaks or bands of certain visible wavelengths to pass through; an object disposed on a first side of the multilayer optical film; and a light source and a light sensor disposed on an opposite second side of, and facing, the multilayer optical film. The object is configured to receive light emitted by the light source through the multilayer optical film. The light sensor is configured to receive light from the multilayer optical film. An optical filter may include the multilayer optical film disposed on a wavelength selective scattering layer and/or on a wavelength selective absorbing layer. The wavelength selective scattering layer may have a near-infrared scattering ratio of less than about 0.9.

Patent Agency Ranking