Abstract:
A method and arrangement for detecting a frequency of a measured three-phase voltage. The method includes measuring a three-phase voltage, forming a discrete model for a periodic signal, the discrete model including the three-phase voltage and a difference between positive and negative voltage components of the three-phase voltage, forming a discrete detector based on the discrete model, detecting a fundamental wave component of the voltage and the difference between the positive and negative voltage components of the three-phase voltage from an error between the measured voltage and detected fundamental wave component of the voltage by using the discrete detector and a sampling time together with a detected frequency of the measured voltage. The detected frequency is detected from a detected difference between positive and negative voltage components of the measured voltage and from an error between the measured voltage and the detected fundamental wave component of the voltage.
Abstract:
An exemplary method and an apparatus implementing the method for an arrangement having a three-phase, multi-level inverter, an output LCL-filter connecting the inverter to a grid, and a virtual-ground connection between the LCL-filter and the neutral point of the DC-link. The method includes determining a zero-sequence component of an LCL-filter inverter-side current, calculating a zero-sequence damping and balancing voltage term based on the LCL-filter inverter-side current zero-sequence component and voltages over the two halves of the DC-link, and adding the zero-sequence damping and voltage balancing term to the output voltage reference.
Abstract:
Exemplary embodiments are directed to methods and systems for producing a three-phase current to a three-phase output. Switching converters are used to generate a positive current, a negative current, and an intermediate current. The system is configured such that the produced positive current follows a path of a highest phase of a sinusoidal three-phase signal at a given time, the produced negative current follows a path of a lowest phase of the three-phase signal at the given time, and the produced intermediate current follows a path of a phase of the three-phase signal between the highest and the lowest phase at the given time. The produced currents are switched to each phase conductor of the three-phase output in sequence so that phase currents of the three-phase current are formed in the output conductors.
Abstract:
An exemplary method and apparatus for detecting islanding conditions of a distributed grid are disclosed, wherein transfer of power through a power electrical unit is controlled on the basis of a control reference. The apparatus includes a first stage and a second stage performing a respective portion of the method. The first stage injects a reactive component to the control reference, and, for at least one electrical quantity of the grid, determines a change in the quantity induced by the injected component, and determines, on the basis of the change in the electrical quantity, whether to move to the second stage of the method. The second stage, for at least one electrical quantity of the grid, determines a value of the electrical quantity, forms a positive feedback term using at the determined value adding a positive feedback term to the control reference, determines a change in an electrical quantity induced by the feedback term, and determines islanding condition on the basis of the change in the quantity induced by the feedback term.
Abstract:
A method and an apparatus for controlling a grid-connected converter which includes a boost converter, a buck converter, and a current source inverter having an output CL filter. An input of the buck converter input is connected to an output of the boost converter, and an input of the current source inverter is connected to an output of the buck converter. The method includes controlling a boost converter input voltage, controlling a boost converter output voltage through control of a buck converter output voltage, and controlling the current source inverter to produce an AC current from the buck converter output voltage. The apparatus implements the method.