Abstract:
A method for recovering missing phase measurement unit (PMU) measurements from a plurality of PMUs is provided. The method comprises: receiving a plurality of obtained PMU measurements from the plurality of PMUs; populating a PMU dataset based on the plurality of obtained PMU measurements; determining a plurality of missing entries within the PMU dataset, wherein each of the plurality of missing entries indicates a missing PMU measurement within the PMU dataset at a particular time; determining a plurality of substitute entries for the plurality of missing entries based on an optimization algorithm that determines differences associated with a missing entry, of the plurality of missing entries, and a first set of PMU measurements, of the plurality of obtained PMU measurements, that are taken immediately prior to the missing entry; and inserting the plurality of substitute entries into the PMU dataset to generate a new PMU dataset.
Abstract:
Methods, systems, and computer readable media for monitoring and management of a power distribution system are disclosed. In one example, the method includes receiving sensory measurement data captured by a mobile inspection device during an inspection of power distribution system elements in a power distribution system. The method further includes processing the received sensory measurement data to derive fault identification data that indicates a fault condition existing in one or more of the power distribution system elements and utilizing the derived fault identification data to update a network model of the power distribution system.
Abstract:
A method for determining whether a power system is encountering a malicious attack is provided. The method comprises: receiving a plurality of first phasor measurement unit (PMU) measurements from a plurality of PMUs of the power system; determining a plurality of expected PMU measurements associated with a future time period based on an optimization algorithm that uses differences between a plurality of consecutive predictive entries and the plurality of first PMU measurements; receiving, from the plurality of PMUs, a plurality of second PMU measurements associated with the future time period; determining whether the power system is encountering the malicious attack based on comparing the plurality of expected PMU measurements with the plurality of second PMU measurements; and executing an action based on whether the power system is encountering the malicious attack.
Abstract:
An intelligent fuse provides the operational status of the power network upon which the fuse is installed to a mobile device of a remote user. A fuse electronic circuit embedded in the fuse holder of the fuse captures the characteristic values of the power network and transmits the data to the mobile device. The mobile device has an application installed thereon to calculate the distance to fault location from the recording fuse using the fuse electronic circuit-captured data. The fuse electronic circuit-captured data is further used to visualize the data collected at the measurement points of the electrical system upon which the fuse is installed.
Abstract:
A method for determining whether a power system is encountering a malicious attack is provided. The method comprises: receiving a plurality of first phasor measurement unit (PMU) measurements from a plurality of PMUs of the power system; determining a plurality of expected PMU measurements associated with a future time period based on an optimization algorithm that uses differences between a plurality of consecutive predictive entries and the plurality of first PMU measurements; receiving, from the plurality of PMUs, a plurality of second PMU measurements associated with the future time period; determining whether the power system is encountering the malicious attack based on comparing the plurality of expected PMU measurements with the plurality of second PMU measurements; and executing an action based on whether the power system is encountering the malicious attack.
Abstract:
A method for recovering missing phase measurement unit (PMU) measurements from a plurality of PMUs is provided. The method comprises: receiving a plurality of obtained PMU measurements from the plurality of PMUs; populating a PMU dataset based on the plurality of obtained PMU measurements; determining a plurality of missing entries within the PMU dataset, wherein each of the plurality of missing entries indicates a missing PMU measurement within the PMU dataset at a particular time; determining a plurality of substitute entries for the plurality of missing entries based on an optimization algorithm that determines differences associated with a missing entry, of the plurality of missing entries, and a first set of PMU measurements, of the plurality of obtained PMU measurements, that are taken immediately prior to the missing entry; and inserting the plurality of substitute entries into the PMU dataset to generate a new PMU dataset.
Abstract:
An intelligent fuse provides the operational status of the power network upon which the fuse is installed to a mobile device of a remote user. A fuse electronic circuit embedded in the fuse holder of the fuse captures the characteristic values of the power network and transmits the data to the mobile device. The mobile device has an application installed thereon to calculate the distance to fault location from the recording fuse using the fuse electronic circuit-captured data. The fuse electronic circuit-captured data is further used to visualize the data collected at the measurement points of the electrical system upon which the fuse is installed.
Abstract:
An intelligent fuse provides the operational status of the power network upon which the fuse is installed to a mobile device of a remote user. A fuse electronic circuit embedded in the fuse holder of the fuse captures the characteristic values of the power network and transmits the data to the mobile device. The mobile device has an application installed thereon to calculate the distance to fault location from the recording fuse using the fuse electronic circuit-captured data. The fuse electronic circuit-captured data is further used to visualize the data collected at the measurement points of the electrical system upon which the fuse is installed.