Abstract:
A converter arrangement and a method of controlling a three-phase converter arrangement connected to a transmission grid are provided. The converter arrangement includes three phase legs and an energy transfer circuit. The method includes providing a varying respective output phase voltage to the transmission grid by selecting energy storage elements of both the phase legs and the energy transfer circuit and connecting the selected energy storage elements to the transmission grid output. The method further includes selecting energy storage elements for performing a transfer of energy between the energy storage elements during the control period.
Abstract:
It is presented a converter cell (10a; 10b) arranged to be used in a high voltage multilevel converter. The converter cell comprises: an energy storage element (16a; 16b) and a plurality of switching elements (S1, . . . , S8). The plurality of switching elements comprises at least one thyristor (S3; S8) and a plurality of transistors (S1, S2, S4; S5, S6, S7). Each one of the at least one thyristor (S3; S8) is provided in a position for a switching element in the converter cell where, during normal operation of the converter cell, the at least one thyristor is in a continuous conducting state. This reduces the power losses of the converter cell. A corresponding multilevel converter and a method are also presented.
Abstract:
A multilevel converter converting between AC and DC includes a phase arm with a number of cells between a DC pole and an AC terminal, the cells include at least one hybrid full bridge cell including a first cell connection terminal for coupling to the DC pole, a second cell connection terminal for coupling to the AC terminal, an energy storage element having a positive and a negative end, a first group of series connected semiconducting units in parallel with the energy storage element, where a junction between these forms one cell connection terminal, and a second group of series connected semiconducting units in parallel with the energy storage element and including a third semiconducting unit and a fourth semiconducting unit consisting of a number of unidirectional conducting elements including at least one unidirectional conducting element, where a junction between these forms a further cell connection terminal.