Abstract:
A voltage converter for direct current includes a power converter circuit having a transformer, a switch converter bridge on a primary-side of the transformer, and a full-bridge rectifier on a secondary side of the transformer. The full-bridge rectifier has first and second rectifier branches. A capacitor is asymmetrically connected to the second rectifier branch.
Abstract:
A bi-directional power converter, a control unit, a charging device and a method for transferring power between an EV and a power grid are provided. The bi-directional power converter includes an isolated DC-DC converter having a first stage converting a DC voltage into a high frequency AC voltage, a second stage capable of converting a high frequency AC voltage having an amplitude V2 into the DC voltage having an amplitude of V2 or 2V2, and converting the DC voltage into a multi-level high frequency AC voltage, and an intermediary stage electrically coupled to the first and the second stages, having a high frequency transformer of a turns ratio V1:V2.
Abstract:
This application discloses a common-mode voltage adjustment method and apparatus, and a control system, and relates to the field of electronic technologies. In an example method, a controller generates an injection instruction of a first common-mode voltage based on a first modulation scheme, generates an injection instruction of a second common-mode voltage based on a second modulation scheme, and generates an injection instruction of a third common-mode voltage based on the injection instruction of the first common-mode voltage and the injection instruction of the second common-mode voltage during a modulation scheme switching period. The injection instruction of the third common-mode voltage may be used to control a inverter circuit to output the third common-mode voltage.
Abstract:
A power module includes: a first substrate layer that is disposed on a first plane; a second substrate layer that is disposed on a second plane that is parallel to the first plane; first and second electrical conductors that are configured to be electrically connected to first and second direct current (DC) reference potentials, respectively, and that extend outwardly from the power module on a third plane that is parallel to the first and second planes; third, fourth, and fifth electrical conductors that are configured to be electrically connected to first, second, and third alternating current (AC) reference potentials, respectively, and that extend outwardly from the power module on a fourth plane that is parallel to the first, second, and third planes; and a plurality of dies of switches, respectively, disposed between the first and second substrate layers.
Abstract:
A current source inverter includes a first phase leg including a plurality of switching devices, a second phase leg including a plurality of switching devices, and a third phase leg including a plurality of switching devices. The current source inverter also includes a zero-state phase leg including at least one switching device, wherein the zero-state phase leg is configured to transition from an open state to prevent current flow to a closed state to allow current flow between a positive and negative terminal during a dead-band time.
Abstract:
A power conversion device is provided which includes a plurality of series circuits each formed of a voltage source and a controlled current source. At least two of said series circuits formed of the voltage source and the controlled current source are connected in parallel. Further, parallel connection points of the series circuits connected in parallel form output terminals.
Abstract:
A voltage source converter of the controlled transition bridge type, having three phase limbs, each phase limb having a high &de director switch (Sw1 Sw3, Sw5) and a low side director switch (Sw4, Sw6, Sw2) connecting a respective DC terminal (DC+, DC−) to an AC node for that phase limb. Chain-link circuits for each phase limb comprise a plurality of series connect cells, each cell having an energy storage element that can be selectively connected in series or bypassed. The chain-link circuits are operated in a voltage mode to provide a defined voltage transition at the AC node during a transition between one director switch being turned off and the other director switch being turned on. Chain-link circuits are connected to a common node such that, in use, a current can flow from one phase limb to another via the respective chain-link circuits.
Abstract:
A power conversion device is provided which includes a plurality of series circuits each formed of a voltage source and a controlled current source. At least two of said series circuits formed of the voltage source and the controlled current source are connected in parallel. Further, parallel connection points of the series circuits connected in parallel form output terminals.
Abstract:
A drive circuit having asymmetrical drivers. In an embodiment, a brushless DC motor may be driven by a drive circuit having three high-side MOSFETs and three low-side MOSFETs. A driver controller turns the MOSFETs on and off according to a drive algorithm such that phase currents are injected into motor coils to be driven. The high-side MOSFETs may be sized differently than the low-side MOSFETs. As such, when a MacDonald waveform (or similar drive algorithm) is used to drive the phases of the motor, less power may be required during disk spin-up because the MOSFETs that are on more (e.g., the low-side MOSFETs with a MacDonald waveform) may be sized larger than the MOSFETs that are on less (e.g., the high-side MOSFETs). In this manner, less power is dissipated in the larger size MOSFETs that are on more than the others.
Abstract:
A single-phase DC-AC converter generates an AC voltage with five levels at the output converter side by using four controlled power switches. The converter has a relationship between the number of levels per number of switches (nL/nS) of five to four. The converter reduces the number of semiconductor devices required to generate a high number of levels at the output converter side, requires only one DC source to generate an AC output, and operates with high efficiency.