Abstract:
An exemplary vacuum interrupter arrangement for a medium voltage circuit breaker includes a vacuum housing within which a pair of electrical contacts are coaxially arranged and concentrically surrounded by the cylindrical shaped vacuum housing. The electrical contacts are formed as a type of TMF-contacts, each having a slotted cup-shaped contact part which is attached to the distal end of a contact shaft and which is covered by a contact ring disposed on a rim of the cup-shaped contact part, wherein each cup-shaped contact part is provided with a vertical inward bending towards the contact ring. The outer diameter of the bottom section of the cup-shaped contact part is larger than the outer diameter of its rim section, in order to alter the Lorentz force to a respective inward direction.
Abstract:
A method to determine pressure inside a vacuum interrupter for medium or high voltage use, having at least one fixed contact piece and at least one movable contact piece arranged inside the technical vacuum of a vacuum interrupter, and wherein contact pieces are electrically connected to external electrical fixation points can implement a high accuracy pressure sensing in rough conditions inside a vacuum interrupter, without additional components internally to the vacuum interrupter, by connecting the external electrical fixation points with an external electrical energy source, and in the disconnected or open position of the vacuum interrupter, the effect of a cold cathode vacuum gauge will be used, in that the leakage current between the open contacts generates an x-ray induced ionization of the rest-gas inside the vacuum interrupter, and the resulting current is measured with high resolution, in order to determine by this current the rest-gas pressure inside the vacuum interrupter.