Abstract:
A system provides white light having a selectable spectral characteristic (e.g. a selectable color temperature, delta uv, and intensity) using a combination of sources (e.g. LEDs) emitting light of three, four, five, or six different characteristics, for example, one or more white LEDs, and one or more LEDs of each of three primary colors, plus cyan and royal blue. A controller maintains a desired spectral characteristic, e.g. for white light at a selected point on or within a desired range of the black body curve. In addition, the controller provides selectable adjustments for values of the spectral characteristics, while maintaining substantially constant overall output intensity for the light output of White LEDs, thereby achieving Maximum Utilization.
Abstract:
An example of a lighting system includes intelligent lighting devices, each of which includes a light source, a communication interface and a processor coupled to control the light source. In such a system, at least one of the lighting devices includes a user input sensor to detect user activity related to user inputs without requiring physical contact of the user; and at least one of the lighting devices includes an output component to provide information output to the user. One or more of the processors in the intelligent lighting devices are further configured to process user inputs detected by the user input sensor, control lighting and control output to a user via the output component so as to implement an interactive user interface for the system, for example, to facilitate user control of lighting operations of the system and/or to act as a user interface portal for other services.
Abstract:
A lighting system having at least three light sources receives an input relating to color coordinates of a target point representing a desired color characteristic for a combined output from the light sources. The system provides color tunable output and/or dimmable output in response to differences in user input. The system also corrects changes in performance of the light sources due to lifetime degradation in each of the light sources. After a period of system operation, outputs of the sources are measured. The system increases the luminosity outputs of each of the light sources by a respective amount relative to the degradations measured in all the light sources; in this manner, the luminosity outputs of the light sources remain substantially constant in relations to each other over the lifetime of the light sources.