Abstract:
A system allows a light fixture to have a wider range of color temperatures (CCT) while limiting the warmest temperature reached at full intensity. The CCT of the light output may be controlled independently of intensity across a certain range of CCT and dependent on intensity across another range. In an implementation, both intensity and CCT may be adjusted from a single handle, where the interface positions may be divided into multiple zones. In another implementation, intensity may be adjusted from a first handle, while CCT may be adjusted from a second handle. The CCT of the light output may be limited to cooler levels when the intensity is higher, and/or the intensity of the light may be limited to lower levels when the CCT is warmer.
Abstract:
A system allows a light fixture to have a wider range of color temperatures (CCT) while limiting the warmest temperature reached at full intensity. The CCT of the light output may be controlled independently of intensity across a certain range of CCT and dependent on intensity across another range. In an implementation, both intensity and CCT may be adjusted from a single handle, where the interface positions may be divided into multiple zones. In another implementation, intensity may be adjusted from a first handle, while CCT may be adjusted from a second handle. The CCT of the light output may be limited to cooler levels when the intensity is higher, and/or the intensity of the light may be limited to lower levels when the CCT is warmer.
Abstract:
A system allows a light fixture to have a wider range of color temperatures (CCT) while limiting the warmest temperature reached at full intensity. The CCT of the light output may be controlled independently of intensity across a certain range of CCT and dependent on intensity across another range. In an implementation, both intensity and CCT may be adjusted from a single handle, where the interface positions may be divided into multiple zones. In another implementation, intensity may be adjusted from a first handle, while CCT may be adjusted from a second handle. The CCT of the light output may be limited to cooler levels when the intensity is higher, and/or the intensity of the light may be limited to lower levels when the CCT is warmer.
Abstract:
A processing device can digitally control lighting fixtures by receiving a request to generate light at a correlated color temperature (“CCT”) level in an environment. The environment can include a first lighting fixture having a first range of generatable CCT values and a second lighting fixture having a second range of generatable CCT values. The processing device can determine a first CCT value based on the request and the first range. The processing device can further determine a second CCT value based on the first CCT value and the second range. The processing device can further transmit a first digital signal to the first lighting fixture to cause the first lighting fixture to generate light at the first CCT value. The processing device can further transmit a second digital signal to the second lighting fixture to cause the second lighting fixture to generate light at the second CCT value.
Abstract:
A system allows a light fixture to have a wider range of color temperatures (CCT) while limiting the warmest temperature reached at full intensity. The CCT of the light output may be controlled independently of intensity across a certain range of CCT and dependent on intensity across another range. In an implementation, both intensity and CCT may be adjusted from a single handle, where the interface positions may be divided into multiple zones. In another implementation, intensity may be adjusted from a first handle, while CCT may be adjusted from a second handle. The CCT of the light output may be limited to cooler levels when the intensity is higher, and/or the intensity of the light may be limited to lower levels when the CCT is warmer.
Abstract:
A processing device can digitally control lighting fixtures by receiving a request to generate light at a correlated color temperature (“CCT”) level in an environment. The environment can include a first lighting fixture having a first range of generatable CCT values and a second lighting fixture having a second range of generatable CCT values. The processing device can determine a first CCT value based on the request and the first range. The processing device can further determine a second CCT value based on the first CCT value and the second range. The processing device can further transmit a first digital signal to the first lighting fixture to cause the first lighting fixture to generate light at the first CCT value. The processing device can further transmit a second digital signal to the second lighting fixture to cause the second lighting fixture to generate light at the second CCT value.
Abstract:
A system allows a light fixture to have a wider range of color temperatures (CCT) while limiting the warmest temperature reached at full intensity. The CCT of the light output may be controlled independently of intensity across a certain range of CCT and dependent on intensity across another range. In an implementation, both intensity and CCT may be adjusted from a single handle, where the interface positions may be divided into multiple zones. In another implementation, intensity may be adjusted from a first handle, while CCT may be adjusted from a second handle. The CCT of the light output may be limited to cooler levels when the intensity is higher, and/or the intensity of the light may be limited to lower levels when the CCT is warmer.
Abstract:
A system allows a light fixture to have a wider range of color temperatures (CCT) while limiting the warmest temperature reached at full intensity. The CCT of the light output may be controlled independently of intensity across a certain range of CCT and dependent on intensity across another range. In an implementation, both intensity and CCT may be adjusted from a single handle, where the interface positions may be divided into multiple zones. In another implementation, intensity may be adjusted from a first handle, while CCT may be adjusted from a second handle. The CCT of the light output may be limited to cooler levels when the intensity is higher, and/or the intensity of the light may be limited to lower levels when the CCT is warmer.
Abstract:
A system allows a light fixture to have a wider range of color temperatures (CCT) while limiting the warmest temperature reached at full intensity. The CCT of the light output may be controlled independently of intensity across a certain range of CCT and dependent on intensity across another range. In an implementation, both intensity and CCT may be adjusted from a single handle, where the interface positions may be divided into multiple zones. In another implementation, intensity may be adjusted from a first handle, while CCT may be adjusted from a second handle. The CCT of the light output may be limited to cooler levels when the intensity is higher, and/or the intensity of the light may be limited to lower levels when the CCT is warmer.
Abstract:
A processing device can digitally control lighting fixtures by receiving a request to generate light at a correlated color temperature (“CCT”) level in an environment. The environment can include a first lighting fixture having a first range of generatable CCT values and a second lighting fixture having a second range of generatable CCT values. The processing device can determine a first CCT value based on the request and the first range. The processing device can further determine a second CCT value based on the first CCT value and the second range. The processing device can further transmit a first digital signal to the first lighting fixture to cause the first lighting fixture to generate light at the first CCT value. The processing device can further transmit a second digital signal to the second lighting fixture to cause the second lighting fixture to generate light at the second CCT value.