Abstract:
A method and system are provided for enhanced signal detection in a frequency selective fading channel. Improved signal detection is realized by replacing single matched filters with multiple matched filters. The single matched filter spectrum is partitioned by frequency into M matched filter groups, where M is a positive integer greater than one. The filter bandwidth of each of the M matched filters is less than the bandwidth of the single matched filter from which they are derived. The M matched filters are provided to filter in parallel fashion the input signal into M sub-spectrums of the signal. The input signal is filtered through the M matched filters and also sent to the energy detector. The matched filter outputs are combined and the received signal is detected using the combined output and the energy in the received signal.
Abstract:
A transmitting unit combines a slot identifier (SI) and a block identifier (BI) in each header that is transmitted with the data to allow a receiving unit to associate previously received data blocks with retransmissions, or retries, of the same respective data blocks in order to perform bit error detection in accordance with a hybrid or selective ARQ protocol. The receiving unit uses the SI and BI contained in the MHBKs to determine a correspondence between a retried data and a previously transmitted data block.
Abstract:
First incoming data comprising at least one OFDM symbol is received (302). A plurality of timing relationships is determined and each of the plurality of timing relationships relates to an alignment window of a fast Fourier transform (FFT) (304). Each of the plurality of timing relationships is applied to the first incoming data (306) and a plurality of achievable interference metrics associated with the first incoming data is responsively determined (308). Each of the plurality of achievable interference metrics is associated with a selected one of the plurality of timing relationships. The preferred interference metric is chosen from amongst the plurality of achievable interference metrics.