Abstract:
A method is described to compensate for deviation error in a H-CPM sync or data burst received by a MLSE receiver in a communication device. The deviation error is estimated and matched filter coefficients are adjusted using the estimated deviation error. Metrics are determined for the current state using the adjusted matched filter coefficients. The state having the minimum metric is determined to be the most likely current state. The most likely previous state is similarly determined. The burst is reconstructed backward from the last state to the initial state. The metric is the squared magnitude of the difference between the channel estimate multiplied by the matched filter coefficient associated with one of the possible states and the current state. Timing and frequency errors are compensated for before estimation and correction of the deviation error. Pilot or sync symbols are used in estimating the deviation error.
Abstract:
A transmitting unit combines a slot identifier (SI) and a block identifier (BI) in each header that is transmitted with the data to allow a receiving unit to associate previously received data blocks with retransmissions, or retries, of the same respective data blocks in order to perform bit error detection in accordance with a hybrid or selective ARQ protocol. The receiving unit uses the SI and BI contained in the MHBKs to determine a correspondence between a retried data and a previously transmitted data block.
Abstract:
A method and system are provided for enhanced signal detection in a frequency selective fading channel. Improved signal detection is realized by replacing single matched filters with multiple matched filters. The single matched filter spectrum is partitioned by frequency into M matched filter groups, where M is a positive integer greater than one. The filter bandwidth of each of the M matched filters is less than the bandwidth of the single matched filter from which they are derived. The M matched filters are provided to filter in parallel fashion the input signal into M sub-spectrums of the signal. The input signal is filtered through the M matched filters and also sent to the energy detector. The matched filter outputs are combined and the received signal is detected using the combined output and the energy in the received signal.
Abstract:
A method for the selection of forward error correction (FEC)/constellation pairings (800) for digital transmitted segments based on learning radio link adaptation (RLA) including formatting a packet transmission having a predetermined number of information bits (801). The packet is then split into a plurality of segments (803) where an RLA is used (805) to determine the optimum format of the packet. The plurality of segments is then sent to a channel encoder for FEC encoding and symbol mapping (807) at a rate selected by the RLA. The segments are then formatted into packet blocks (809) and transmitted in blocks that form a time slot at a constant symbol rate.
Abstract:
A method and system are provided for enhanced signal detection in a frequency selective fading channel. Improved signal detection is realized by replacing single matched filters with multiple matched filters. The single matched filter spectrum is partitioned by frequency into M matched filter groups, where M is a positive integer greater than one. The filter bandwidth of each of the M matched filters is less than the bandwidth of the single matched filter from which they are derived. The M matched filters are provided to filter in parallel fashion the input signal into M sub-spectrums of the signal. The input signal is filtered through the M matched filters and also sent to the energy detector. The matched filter outputs are combined and the received signal is detected using the combined output and the energy in the received signal.
Abstract:
Disclosed are methods for adjustment values. In one embodiment, a cumulative adjustment value is provided in memory, an inbound signal is transmitted to a base station during a random access opportunity, and a relative adjustment value is received from the base station. Then, the relative adjustment value is summed with the cumulative adjustment value to create a new cumulative adjustment value which is stored in the memory. Finally, a subsequent inbound signal is transmitted using the new cumulative adjustment value during a reserved access opportunity.
Abstract:
In an outbound transmission (300), an address of a first subscriber unit assigned to transmit in a first inbound slot is identified. With one bit in the outbound transmission (300), an additional inbound slot the first subscriber unit is assigned to transmit is identified.
Abstract:
Methods for sequencing datagram transmissions are disclosed, including, receiving an unqueued segment to be enqueued in a queue. The queue comprises at least one segment. Determining a priority level and a number of attempted transmissions for the unqueued segment (100). If the unqueued segment is enqueued in front of a segment belonging to a datagram in the queue, and at least one segment belonging to the datagram has been transmitted before all the segments belonging to the datagram have been transmitted, at least one of the following functions is performed: discarding any remaining segments belonging to the datagram in the queue, transmitting any remaining segments belonging to the datagram in the queue, and re-enqueuing segments belonging to the datagram at the same location in the queue as the partially transmitted datagram, but with a different identifier.
Abstract:
A slot format and acknowledgment method for use in a communication network that contains one or more wireless links. The slot format provides for the segmenting and reassembly of packets for transport over a wireless link. It also provides support for multiple types of service for the data being carried over the wireless link as well as allocating of access to the wireless link among a plurality of communication units. The acknowledgment method provides for detection of errors over the wireless link, the selective acknowledgment of error-free transmissions and the selective resending of transmissions received in error.
Abstract:
A method is described to compensate for deviation error in a H-CPM sync or data burst received by a MLSE receiver in a communication device. The deviation error is estimated and matched filter coefficients are adjusted using the estimated deviation error. Metrics are determined for the current state using the adjusted matched filter coefficients. The state having the minimum metric is determined to be the most likely current state. The most likely previous state is similarly determined The burst is reconstructed backward from the last state to the initial state. The metric is the squared magnitude of the difference between the channel estimate multiplied by the matched filter coefficient associated with one of the possible states and the current state. Timing and frequency errors are compensated for before estimation and correction of the deviation error. Pilot or sync symbols are used in estimating the deviation error.