Abstract:
A programmed computer is used to create a digital model of an individual component of a patient's dentition. The computer obtains a 3D digital mode of the patient's dentition, identifies points in the dentition model that lie on an inter-proximal margin between adjacent teeth in the patient's dentition, and uses the identified points to create a cutting surface that separates portions of the dentition model representing the adjacent teeth.
Abstract:
Methods and corresponding apparatus for segmenting an orthodontic treatment path into clinically appropriate substeps for repositioning the teeth of a patient include providing a digital finite element model of the shape and material of each of a sequence of appliances to be applied to a patient; providing a digital finite element model of the teeth and related mouth tissue of the patient; computing the actual effect of the appliances on the teeth by analyzing the finite elements models computationally; and evaluating the effect against clinical constraints. The appliances can be braces, polymeric shells, or other forms of orthodontic appliance.
Abstract:
A computer or other digital circuitry is used to assist in the creation of a digital model of an individual component, such as a tooth or gum tissue, in a patient's dentition. The computer receives a data set that forms a three-dimensional (3D) representation of the patient's dentition, applies a test to the data set to identify data elements that represent portions of the individual component, and creates a digital model of the individual component based upon the identified data elements. Many implementations require the computer to identify data elements representing a 2D cross-section of the dentition lying in a 2D plane that is roughly parallel to or roughly perpendicular to the dentition's occlusal plane. The computer analyzes the 2D cross-section to identify dentition features that represent boundaries between individual dentition components.
Abstract:
A programmed computer is used to create a digital model of an individual component of a patient's dentition. The computer obtains a 3D digital model of the patient's dentition, identifies points in the dentition model that lie on an inter-proximal margin between adjacent teeth in the patient's dentition, and uses the identified points to create a cutting surface that separates portions of the dentition model representing the adjacent teeth.