Abstract:
Threshold values smaller than degrees of proximity of an object indicated by detection data at peak positions are set based on detection data of the peak positions at which a degree of proximity of the object is higher than that of surrounding detection positions. An evaluation value according to an area of a region on a detection surface occupied by a group of detection positions, including the peak positions, in which degrees of proximity of the object indicated by detection data are higher than the threshold values, is calculated, and it is determined whether the object in proximity to the peak position is a finger or a palm based on the evaluation value.
Abstract:
An input apparatus includes a sensor section configured to include a plurality of detection units, and to control positive and negative polarities of a detection signal at each detection position, a control unit configured to generate a group of combined detection signals in which polarity patterns are different from each other, and a signal reproduction unit configured to reproduce signal levels of a group of detection signals on the basis of a group of combined detection signals and a group of polarity patterns, in which at least some of the plurality of detection units differ in the number of detection positions, and the control unit selects the group of polarity patterns according to the number of detection positions so that the number of positive polarities and the number of negative polarities included in each of the polarity patterns are similar to each other.
Abstract:
Provided is a sine wave multiplication device of simple configuration, broad input signal level range, and minimal fluctuation in characteristics due to temperature. A signal component that corresponds to a product of an input signal Si and the third harmonic wave of a first square wave W1 included in an output signal Su1; and a signal component that corresponds to a product of the input signal Si and the fifth harmonic wave of the first square wave W1 is canceled by: a signal component that corresponds to a product of the input signal Si and the fundamental wave of a second square wave W2 included in an output signal Su2; and a signal component that corresponds to a product of the input signal Si and the fundamental wave of a second square wave W3 included in an output signal Su3.
Abstract:
A driving signal is applied to a plurality of driving electrodes using the driving matrix illustrated in FIG. 5A obtained by removing a row in which a sum of codes is greatest and a column having a transposition relationship with the row in a Hadamard matrix. Distribution of capacitance in intersection portions between a sensing electrode and a plurality of driving electrodes can be obtained using an inverse matrix of the driving matrix illustrated in FIG. 5B. Further, when decoding is performed using an extended matrix obtained by replacing “0” with “−1” in FIG. 5B, it is possible to average noise and to improve an S/N ratio.