Abstract:
Embodiments are provided for biasing circuits with compensation of process variation without band-gap referenced current or voltage. In an embodiment, a circuit for biasing a field-effect transistor (FET) passive mixer comprises a series of diode-connected FETs, and a series of first resistors connected to a voltage source and the series of diode-connected FETs. Additionally, one or more second resistors are connected to the series of diode-connected FETs and to ground. In an embodiment method, the total number of the diode-connected FETs and the total number of the resistors, including the first and second series of resistors, are selected. The total number of the second resistors is then determined according to a defined relation between the selected total number of diode-connected FETs and the total number of resistors.
Abstract:
A frequency converter, comprising a multi-phase local oscillator and a multi-phase mixer. The mixer comprises a plurality of mixer switches, each connected to a respective amplifier. The local oscillator is configured to provide a switching signal to each mixer switch, and comprises a plurality of inverters configured as a ring oscillator.
Abstract:
Embodiments are provided for biasing circuits with compensation of process variation without band-gap referenced current or voltage. In an embodiment, a circuit for biasing a field-effect transistor (FET) passive mixer comprises a series of diode-connected FETs, and a series of first resistors connected to a voltage source and the series of diode-connected FETs. Additionally, one or more second resistors are connected to the series of diode-connected FETs and to ground. In an embodiment method, the total number of the diode-connected FETs and the total number of the resistors, including the first and second series of resistors, are selected. The total number of the second resistors is then determined according to a defined relation between the selected total number of diode-connected FETs and the total number of resistors.
Abstract:
A mixer comprising a ladder having at least two resistances arranged in series and an input configured to receive an input signal and apply it across the ladder, said ladder including an output arrangement comprising at least three branches, a first branch branching from a first end of the ladder, a second branch branching from between the at least two resistances and a third branch branching from a second end of the ladder, opposite the first end, each branch including a switch for controlling a connection between its branch and an output.
Abstract:
A signal converting device includes: a reference signal-mixing circuit arranged to generate a reference mixing output signal according to an input signal, a reference gain, and a reference local oscillating signal; a plurality of auxiliary signal-mixing circuits, each arranged to generate an auxiliary mixing output signal according to the input signal, an auxiliary gain, and an auxiliary local oscillating signal; and a combining circuit arranged to combine the reference mixing output signal and a plurality of the auxiliary mixing output signals to generate an output signal, and at least one of the auxiliary signal-mixing circuits is configured by the corresponding auxiliary gain to compensate phase imbalances between the reference mixing output signal and each of the auxiliary mixing output signals to reduce a power of a harmonic component in the output signal.
Abstract:
Regarding N-channel first transistor and a P-channel second transistor, their first terminals are connected to each other and their second terminals are connected to each other. Regarding third transistor and a fourth transistor, their first terminals are also connected to each other and their second terminals are also connected to each other. For the first transistor through the fourth transistor, a first capacitor through a fourth capacitor used for coupling are provided. A first impedance element through a fourth impedance element are provided in a path where a bias voltage is applied to the first transistor through the fourth transistor. A fifth capacitor is provided between the first terminals of the first-fourth transistors and a first input terminal. A fifth impedance element and a sixth impedance element are provided as differential pair loads.
Abstract:
In one aspect, a mixer that provides improved isolation between an input oscillator and a mixing cell. In another aspect, a mixer that includes circuitry operative to shape an input signal provided by a local oscillator.
Abstract:
A passive mixer may include an output coupled to a next stage circuit. The output may be coupled to baseband inputs via first switches. The passive mixer may further include a tunable capacitor bank. The tunable capacitor bank may be coupled via second switches to the baseband inputs.
Abstract:
A switching circuit is linearized by using a capacitor to apply a drive voltage to an FET, wherein the drive voltage is independent of the signal switched by the switching circuit.
Abstract:
A frequency converter, comprising a multi-phase local oscillator and a multi-phase mixer. The mixer comprises a plurality of mixer switches, each connected to a respective amplifier. The local oscillator is configured to provide a switching signal to each mixer switch, and comprises a plurality of inverters configured as a ring oscillator.