Abstract:
The invention relates to a turbine blade, including a blade having a front edge and a rear edge, which blade transitions by means of a shaft into a blade root designed for fastening the turbine blade, and including a platform, which is arranged at the lower end of the blade in order to bound a flow channel. The platform is designed as a separate component and can be connected to the blade in a form-fit manner. Flexible application is achieved in that the platform is composed of several individual platform elements, which enclose the blade in the assembled state.
Abstract:
A turbine blade is provided and includes a tip end carrying a shroud and at least one fin, which extends radially away from the shroud. The fin includes a first sidewall and a second sidewall, which are spaced apart, arranged parallel to each other, and are connected to the shroud, and a cutting edge, which is connected to the first and second sidewalls. The cutting edge thereby creates a hollow space between the sidewalls, the shroud, and the cutting edge, and further extends radially away from the first and second sidewalls. Also provided is a method of manufacturing the blade by casting the blade as single piece with the hollow fin or by forging the blade; and machining the fin to create the first and second sidewalls and cutting edge thereby opening the hollow space between said sidewalls and the cutting edge.
Abstract:
An internally cooled airfoil for a rotary machine, for example, a gas turbine engine includes a suction and pressure side wall each extending in an axial direction, i.e. from a leading to a trailing edge of the airfoil. A suction wall sided cooling channel and a pressure wall sided cooling channel extend in the axial direction. A feed chamber is defined between a first and second inner wall for feeding the suction wall and pressure wall sided cooling channel each by at least one through hole inside of the first and second inner wall. The suction wall sided cooling channel and the pressure wall sided cooling channel extend into the trailing edge region separately. The suction wall sided cooling channel and the pressure wall sided cooling channel join before discharging at the trailing edge.
Abstract:
A cooled wall segment in the hot gas path of a gas turbine. The wall segment includes a first surface, exposed to a medium of relatively high temperature, a second surface, exposed to a medium of relatively low temperature, and side surfaces connecting the first and second surface and defining a height of the wall segment. At least one cooling channel for a flow-through of a fluid cooling medium extends through the wall segment. Each cooling channel is provided with an inlet and an outlet for the cooling medium. The at least one cooling channel includes at least two heat transfer sections, a first heat transfer section extending essentially parallel to the first surface at a first distance from the first surface and a second heat transfer section extending essentially parallel to the first surface at a second distance, whereby the second distance is less than the first distance.
Abstract:
The invention relates to a component for a thermal machine, in particular a gas turbine, which includes a corner and/or edge subjected to a thermally high load. The cooling of the component is improved in a manner such that at least one cooling channel is countersunk into the surface of the component in the immediate vicinity of the corner and/or edge in order to cool the corner and/or edge.
Abstract:
The invention refers to a stationary gas turbine arrangement with at least one turbine stage that includes at least a first row of vanes being mounted at a stationary component arranged radially outside of the first row of vanes and extending radially into an annular entrance opening of the turbine stage facing a downstream end of a combustor. Further a method for performing maintenance work on a stationary gas turbine is described. The invention is characterized in that the stationary component provides for each vane a radially orientated through-hole designed and arranged for a radial insertion and removal of the vane, and each of said vanes comprises an airfoil having at its one end directed radially outwards a contour being adapted to close the through-hole airtight by a detachable fixation means.
Abstract:
A stator component of a turbomachine includes at least one axially extending outer ring which serves as a frame of an inner ring composed of partial segments. The partial segments are arranged on one another such that, on the rotor side, to form a coherent circular circumferential surface in relation to the rotational movement of rotor blades. The individual partial segment is composed of a material of uniform construction or, at least in a radial direction, of multiple partial bodies constructed from different materials, such as for example ceramic, wherein a partial segment thus formed exhibits predetermined stress and/or expansion behavior as a function of the load ranges of the turbomachine.
Abstract:
A method for manufacturing a metal-ceramic composite structure for high temperature exposure is provided, whereby the composite structure includes a base metal structure or component, which is on at least one side covered and permanently joined with one or more ceramic tiles. The method may include the steps of: manufacturing green bodies with cavities and sintering the green bodies to receive ceramic tiles into cavities; arranging the ceramic tiles in a cast mould; pouring liquid metal into the cast mould to substantially fill the cavities; creating an intermediate metal layer; and solidifying the liquid metal to permanently join the ceramic tiles and the intermediate metal layer.
Abstract:
The invention refers to an internally cooled casted airfoil for a rotary machine, preferably a gas turbine engine comprising a suction and a pressure side wall each extending in an axial direction, i.e. from a leading to a trailing edge region of said airfoil. At least one suction wall sided cooling channel extends in axial direction confined by the suction side wall and a first inner wall. At least one pressure wall sided cooling channel extends in axial direction confined by the pressure side wall and a second inner wall. At least one feed chamber is defined between the first and second inner wall for feeding said at least one suction and pressure sided cooling channel each by at least one through hole inside of the first and second inner wall. At least one suction wall sided cooling channel and the at least one pressure wall sided cooling channel extend into the trailing edge region separately. At least one suction wall sided cooling channel and at least one pressure wall sided cooling channel join before discharging at the trailing edge.
Abstract:
The invention refers to a stationary gas turbine arrangement with at least one turbine stage that includes at least a first row of vanes being mounted at a stationary component arranged radially outside of the first row of vanes and extending radially into an annular entrance opening of the turbine stage facing a downstream end of a combustor. Further a method for performing maintenance work on a stationary gas turbine is described. The invention is characterized in that the stationary component provides for each vane a radially orientated through-hole designed and arranged for a radial insertion and removal of the vane, and each of said vanes comprises an airfoil having at its one end directed radially outwards a contour being adapted to close the through-hole airtight by a detachable fixation means.