Abstract:
An electrowetting element comprising a first fluid, a second fluid immiscible with the first fluid, a first electrode, a second electrode in contact with the second fluid and a first and second support plate. The first support plate comprises the first electrode and a surface. The second support plate comprises a protrusion which overlaps a first surface portion of the surface and which, with a first voltage with a substantially zero magnitude applied between the first electrode and the second electrode, contacts the second fluid without substantially contacting the first fluid. Upon application of a second voltage with a non-zero magnitude between the first electrode and the second electrode, the first fluid moves such that there is substantially no contact between the first fluid and the first surface portion.
Abstract:
An electrowetting display device includes light steering structures that direct incoming light away from pixel walls. According to some configurations, transparent or semi-transparent pixel walls are shielded from incoming light by a black matrix (BM) material in a color filter plate and by the light steering structures. Instead of the incoming light being completely blocked by the black matrix, at least a portion of the incoming light that would have been blocked by the black matrix is directed by one or more of the light steering structures to an area of the pixel such that the brightness of the pixel is increased.
Abstract:
Subject matter disclosed herein relates to improving luminance and reducing color shifts in electrowetting displays. The electrowetting display comprises a plurality of electrowetting elements separated by partition walls and spacers. The spacers and/or partition walls are reflective. When incident light that enters a pixel or subpixel is reflected and encounters a spacer and/or partition wall, the light is reflected such that the reflected light exits the pixel or subpixel into which the incident light entered. This improves luminance and reduces color shifts of the electrowetting display.
Abstract:
A display device includes a first support plate. A pixel region is formed on the first support plate and a reflective layer is positioned in the pixel region. The reflective layer includes a specular reflector and a diffuse reflector.
Abstract:
An electrowetting display comprises a first support plate, a second support plate substantially parallel to the first support plate, an electrolyte solution disposed between the first support plate and the second support plate, and a plurality of transparent diffuser elements protruding into the electrolyte solution from non-contiguous areas of the second support plate. Recesses separate the transparent diffuser elements.
Abstract:
Subject matter disclosed herein relates to improving luminance and reducing color shifts in electrowetting displays. The electrowetting display comprises a plurality of electrowetting elements separated by partition walls and spacers. The spacers and/or partition walls are reflective. When incident light that enters a pixel or subpixel is reflected and encounters a spacer and/or partition wall, the light is reflected such that the reflected light exits the pixel or subpixel into which the incident light entered. This improves luminance and reduces color shifts of the electrowetting display.
Abstract:
A method for fabricating an electrowetting display may include forming pixel electrodes on a support plate; depositing a first layer on the pixel electrodes; etching portions of the first layer to form pixel walls that partition pixel regions; depositing a second layer on the pixel electrodes and the pixel walls; etching portions of the second layer to form spacers on tops of the pixel walls; and depositing a hydrophobic layer to at least partially cover the pixel electrodes.
Abstract:
A display device including a first support plate and an opposing second support plate. A first pixel is positioned between the first support plate and the second support plate. A spacer structure is coupled to the second support plate and associated with the first pixel. The spacer structure allows propagation of light having a first wavelength and prevents propagation of light having a second wavelength.
Abstract:
A display device includes a first support plate and an opposing second support plate. A first pixel region between the first support plate and the second support plate includes a first thin film transistor (TFT) structure over the first support plate. A second pixel region between the first support plate and the second support plate and adjacent the first pixel region includes a second TFT structure over the first support plate. A first pixel wall portion is positioned over the first support plate between the first pixel region and the second pixel region such that each of the first TFT structure and the second TFT structure is positioned adjacent the first pixel wall portion. A light-blocking portion is disposed on an inner surface of the second support plate and positioned over the first TFT structure and the second TFT structure.
Abstract:
An electrowetting display device includes a first support plate and a second support plate. The first support plate has rows and columns of pixel walls defining individual electrowetting pixels. A first fluid and a second fluid immiscible with the first fluid are between the first support plate and the second support plate. A sensor is coupled to the second support plate and configured to detect a first intensity of light incident upon the second support plate at a first angle. A controller is configured to displace the first fluid in either a first direction or a second direction based at least in part upon the first intensity of light detected by the sensor.