Abstract:
Features are disclosed for estimating a noise level using a variable step size. An acoustic echo canceller (AEC) may be configured to perform echo cancellation. The acoustic echo canceller may determine an estimated echo using a playback signal. The acoustic echo canceller also may determine an estimated error using the estimated echo and a microphone signal. A variable step size may be determined using the estimated error and the microphone signal. Noise reduction may be performed using the variable step size.
Abstract:
Features are disclosed for measuring and correcting clock drift and propagation delay in an audio system through one or more waveforms embedded in an audio signal. A first device in communication with a speaker may be configured to obtain an audio signal and insert one or more waveforms into the audio signal. For example, the waveforms may be inserted during an interval of time. A second device in communication with a microphone may be configured to detect sound as an audio input signal. The second device may obtain a spectral representation of the audio input signal and determine a rotation based on the spectral representation at the frequency of at least one of the inserted waveforms. Clock drift may be determined based on the rotation.
Abstract:
A acoustic echo canceller (AEC) system may be configured to perform echo cancellation in the frequency domain. Features are disclosed for determining an estimated echo in the frequency domain using adaptive filters. An adaptive filter corresponding to a frequency bin can comprise a plurality of filter taps. Additional features are disclosed for updating the adaptive filter. In addition, a frequency-bin dependent step size controller may be used to control a step size used in updating the adaptive filters. Features are disclosed for determining the frequency-bin dependent step size.
Abstract:
An acoustic echo cancellation (AEC) system that detects and compensates for differences in delay times between the AEC system and a set of wireless speakers. The filter coefficients used for AEC are adjusted based on the determined delay time to correct for frequency domain signal rotation.
Abstract:
An echo cancellation system that generates multiple output paths, enabling Automatic Speech Recognition (ASR) processing in parallel with voice communication. For single direction AEC (e.g., ASR processing), the system prioritizes speech from a single user and ignores other speech by selecting a single directional output from a plurality of directional outputs as a first output path. For multi-directional AEC (e.g., voice communication), the system includes all speech by combining the plurality of directional outputs as a second output path. The system may use a weighted sum technique, such that each directional output is represented in the combined output based on a corresponding signal metric, or an equal weighting technique, such that a first group of directional outputs having a higher signal metric may be equally weighted using a first weight while a second group of directional outputs having a lower signal metric may be equally weighted using a second weight.
Abstract:
A head-mounted wearable device (HMWD) provides audio output from a first speaker that is driven with a first signal and a second speaker that is driven with a second signal. Based on a volume level setting, an equalization profile and inversion frequency are determined. The equalization profile selectively amplifies or attenuates particular frequencies or ranges of frequencies. Those frequencies in the second signal that are above the inversion frequency have their amplitude inverted, relative to the first signal. When driven by the first signal and the second signal, the first speaker and the second speaker operate as acoustic dipoles below the inversion frequency and acoustic quadrupoles above the inversion frequency. Sound from the first and second speakers with frequencies above the inversion frequency exhibits destructive interference. As a result, the user wearing the HMWD is able hear audio output while audio amplitude perceived by the bystanders is significantly reduced.
Abstract:
Systems and methods for disabling adaptive echo cancellation functionality for a temporal window are provided herein. In some embodiments, audio data may be received by a voice activated electronic device, where the audio data may include an utterance of a wakeword that may be subsequently followed by additional speech. A start time of when the wakeword began to be uttered may be determined by the voice activated electronic device, and the voice activated electronic device may also send the audio data to a backend system. Adaptive echo cancellation functionality may be disabled at the start time. The backend system may determine an end time of the speech, and may provide an indication to the voice activated electronic device of the end time, which in turn may cause the voice activated electronic device to enable the adaptive echo cancellation functionality at the end time.
Abstract:
A system may be configured to interact with a user through speech using a first and second audio devices, where the first device produces audio and the second device captures audio. The second device may be configured to perform acoustic echo cancellation with respect to a microphone signal based on a reference signal provided by the first device. The reference and microphone signals may have the same nominal signal rates. However, the signal rates may drift from each other over time. In order to synchronize the rates of the signals, each of the devices maintains a signal index. The second device compares the values of the two signal indexes over time to determine rate differences between the reference and microphone signals and then corrects for the rate differences.
Abstract:
An acoustic echo cancellation (AEC) system that detects and compensates for differences in sample rates between the AEC system and a set of wireless speakers based on a search-based trial-and-error technique. The system individually determines a frequency offset for each microphone-speaker pair using an iterative process, determining an echo-return loss enhancement (ERLE) value for each offset that is tried, and selecting the frequency offset associated with the largest ERLE value.
Abstract:
A multi-channel audio communication system is configured to receive highly correlated input audio signals, generated as an example by multiple microphones at a far-end site. Each input audio signal is cyclically stepped through a range of discrete delay amounts, between upper and lower limits, using a step size that is a fraction of the sample period of the input audio signals. Delay cycles applied to the different input audio signals are configured to have different phases, thereby reducing the inter-signal correlation of the input audio signals. The delayed input audio signals are then played by loudspeakers. Microphone output, which may contain sound generated by the loudspeakers, is then subjected to multi-channel acoustic echo cancellation.