Abstract:
Among other things, a detector unit for a detector array of a radiation imaging modality is provided. In some embodiments, the detector unit comprises a radiation detection sub-assembly and an electronics sub-assembly. In some embodiments, at least some portions of the detector unit, such as the electronics sub-assembly, may be formed via a semiconductor fabrication technique. By way of example, an electronics sub-assembly may be formed via a semiconductor fabrication technique and may comprise electronic circuitry which is embedded in a molding compound. In some embodiments, such electronic circuitry may be electrically coupled together via electrically conductive traces and/or vias.
Abstract:
Among other things, a detector unit for a radiation detector array is provided. The detector unit includes a radiation detection sub-assembly including a scintillator and a photodetector array. A first routing layer is coupled to the photodetector array of the radiation detection sub-assembly at a first surface of the routing layer. An electronics assembly includes an analog-to-digital converter that converts an analog signal to a digital signal. A second routing layer is disposed between the A/D converter and the first routing layer. A shielding element is disposed between the A/D converter and the second routing layer. The shielding element shields the A/D converter from the radiation photons. The second routing layer couples the electronics sub-assembly to the first routing layer. A first coupling element couples the A/D converter to the second routing layer.