Abstract:
A method for treating Chronic Obstructive Pulmonary Disease (COPD) or chronic bronchitis to alleviate the discomforts of breathing by using non-thermal electroporation energy to ablate diseased portions of the lung including the bronchus, airways and alveoli which, in effect, opens the restrictive diseased portions thereby maximizing the overall surface area thereof causing improved airflow and uninhibited breathing.
Abstract:
System for increasing a target zone for electrical ablation includes a treatment control module executable by a processor. The control module directs a pulse generator to apply pre-conditioning pulses to subject tissue cells in a pre-conditioning zone to electroporation, the pre-conditioning zone being smaller than a target ablation zone. After the pre-conditioning pulses have been applied, the control module directs the pulse generator to apply treatment pulses to electrically ablate the tissue cells in the target ablation zone. The pre-conditioning pulses cause the pre-conditioning zone to have a much higher conductivity so that the zone acts as a larger electrode area when the treatment pulses are applied, which results in a much larger target ablation zone than otherwise possible.
Abstract:
System for increasing a target zone for electrical ablation includes a treatment control module executable a processor. The control module directs a pulse generator to apply pre-conditioning pulses to subject tissue cells in a pre-conditioning zone electroporation, the pre-conditioning zone being smaller than a target ablation zone. After the pre-conditioning pulses have been applied, the control module directs the pulse generator to apply treatment pulses to electrically ablate the tissue cells in the target ablation zone. The pre-conditioning pulses cause the pre-conditioning zone to have a much higher conductivity so that the zone acts as a larger electrode area when the treatment pulses are applied, which result in a much larger target ablation zone than otherwise possible.
Abstract:
System for electrically ablating tissue of a patient through a plurality of electrodes includes a memory, a processor and a treatment control module stored in the memory and executable by the processor. The treatment control module generates an estimated treatment region based on the number of electrical pulses to be applied.
Abstract:
A method for treating Chronic Obstructive Pulmonary Disease (COPD) or chronic bronchitis to alleviate the discomforts of breathing by using non-thermal electroporation energy to ablate diseased portions of the lung including the bronchus, airways and alveoli which, in effect, opens the restrictive diseased portions thereby maximizing the overall surface area thereof causing improved airflow and uninhibited breathing.
Abstract:
System for electrically ablating tissue of a patient through a plurality of electrodes includes a memory, a processor and a treatment control module stored in the memory and executable by the processor. The treatment control module generates an estimated treatment region based on the number of electrical pulses to be applied.
Abstract:
System for electrically ablating tissue of a patient through a plurality of electrodes includes a memory, a processor and a treatment control module stored in the memory and executable by the processor. The treatment control module generates an estimated treatment region based on the number of electrical pulses to be applied.
Abstract:
The present invention relates to medical devices and methods for treating a lesion such as a vascular stenosis using non-thermal irreversible electroporation (NTIRE). Embodiments of the present invention provide a balloon catheter type NTIRE device for treating a target lesion comprising a plurality of electrodes positioned along the balloon that are electrically independent from each other so as to be individually selectable in order to more precisely treat an asymmetrical lesion in which the lesion extends only partially around the vessel.
Abstract:
A system for synchronizing application of treatment signals with a cardiac rhythm is provided. The system includes a memory that receives and stores a synchronization signal indicating that a predetermined phase such as R-wave of a cardiac rhythm of a patient has started. A synchronization module analyzes whether the stored synchronization signal is erroneous and if so, prevents a medical treatment device from applying a treatment energy signal such as an IRE pulse to a patient to take into account an irregular heart beat and noise in the synchronization signal in order to maximize safety of the patient.
Abstract:
A method for treating Chronic Obstructive Pulmonary Disease (COPD) or chronic bronchitis to alleviate the discomforts of breathing by using non-thermal electroporation energy to ablate diseased portions of the lung including the bronchus, airways and alveoli which, in effect, opens the restrictive diseased portions thereby maximizing the overall surface area thereof causing improved airflow and uninhibited breathing.