Abstract:
Optical apparatus includes a projector, which is configured to direct a pattern of one or more stripes, extending along a longitudinal dimension across a target. A receiver includes an array of optical sensors, and objective optics, which are configured to image the target onto the array, and which have a non-circular aperture, which is elongated in a direction dependent upon the longitudinal dimension of the stripes.
Abstract:
Optical apparatus includes a projector, which is configured to direct a pattern of one or more stripes, extending along a longitudinal dimension across a target. A receiver includes an array of optical sensors, and objective optics, which are configured to image the target onto the array, and which have a non-circular aperture, which is elongated in a direction dependent upon the longitudinal dimension of the stripes.
Abstract:
Optical apparatus includes a plurality of emitters arranged in a row and configured to emit respective beams of optical radiation. Projection optics, which are configured to project the beams toward a target, include first cylindrical lenses, which have respective, mutually-parallel first cylinder axes and are aligned respectively with the emitters in the row so as to receive and focus the respective beams in a first dimension, and a second cylindrical lens, which has a second cylinder axis perpendicular to the first cylinder axes and is positioned to receive and focus all of the beams in a second dimension, perpendicular to the first dimension. A scan driver is configured to shift the second cylindrical lens in a direction perpendicular to the second cylinder axis so as to scan the beams across the target.
Abstract:
Systems and methods for electronically controlling the viewing angle of a display using liquid crystal optical elements are provided. Each liquid crystal optical element may be associated with a respective scattering module and may selectively steer a device generated light beam to one of two or more scattering regions of its associated scattering module. When a scattering region receives a steered light beam, the steered light beam may be scattered into a viewing cone having at least one viewing angle defined by a characteristic of that scatter region. Each liquid crystal optical element may be made from one or more suitable liquid crystal materials that can be controlled electronically to vary the effective index of refraction of one or more different regions of the liquid crystal optical element, thereby steering incoming light towards a particular one of two or more scattering regions of an associated scattering module.
Abstract:
A camera including a spherically curved photosensor and a lens system. Effective focal length f of the lens system is within about 20% of the radius of curvature of the photosensor. An image is formed by the lens system at a spherically curved image plane that substantially matches the concave surface of the photosensor. The camera is diffraction-limited with small spot size, allowing small pixels to be used in the photosensor. F/number may be 1.8 or less. The spherically curved image plane formed by the lens system at the photosensor follows f*θ image height law. Chief rays of the lens system are substantially normal to the concave surface of the photosensor. Total axial length of the camera may be 2.0 mm or less. The camera may be implemented in a small package size while still capturing sharp, high-resolution images, making the camera suitable for use in small devices.
Abstract:
Embodiments are directed to optical measurement systems that utilize multiple emitters to emit light during a measurement, as well as methods of performing measurements using these optical measurement systems. The optical measurement systems may include a light generation assembly that is configured to generate light via a light source unit, and a photonic integrated circuit that includes a launch group having a plurality of emitters. Each of these emitters is optically coupled to the light generation assembly to receive light generated from the light generation assembly, and may emit this light from a surface of the photonic integrated circuit. The optical measurement system may perform a measurement in which the light generation assembly generates light and each of the plurality of emitters simultaneously emit light received from the light generation assembly.
Abstract:
Systems and methods for electronically controlling the viewing angle of a display using liquid crystal optical elements are provided. Each liquid crystal optical element may be associated with a respective scattering module and may selectively steer a device generated light beam to one of two or more scattering regions of its associated scattering module. When a scattering region receives a steered light beam, the steered light beam may be scattered into a viewing cone having at least one viewing angle defined by a characteristic of that scatter region. Each liquid crystal optical element may be made from one or more suitable liquid crystal materials that can be controlled electronically to vary the effective index of refraction of one or more different regions of the liquid crystal optical element, thereby steering incoming light towards a particular one of two or more scattering regions of an associated scattering module.
Abstract:
A camera including a spherically curved photosensor and a lens system. Effective focal length f of the lens system is within about 20% of the radius of curvature of the photosensor. An image is formed by the lens system at a spherically curved image plane that substantially matches the concave surface of the photosensor. The camera is diffraction-limited with small spot size, allowing small pixels to be used in the photosensor. F/number may be 1.8 or less. The spherically curved image plane formed by the lens system at the photosensor follows f*θ image height law. Chief rays of the lens system are substantially normal to the concave surface of the photosensor. Total axial length of the camera may be 2.0 mm or less. The camera may be implemented in a small package size while still capturing sharp, high-resolution images, making the camera suitable for use in small devices.
Abstract:
A camera including a spherically curved photosensor and a lens system. Effective focal length f of the lens system is within about 20% of the radius of curvature of the photosensor. An image is formed by the lens system at a spherically curved image plane that substantially matches the concave surface of the photosensor. The camera is diffraction-limited with small spot size, allowing small pixels to be used in the photosensor. F/number may be 1.8 or less. The spherically curved image plane formed by the lens system at the photosensor follows f*θ image height law. Chief rays of the lens system are substantially normal to the concave surface of the photosensor. Total axial length of the camera may be 2.0 mm or less. The camera may be implemented in a small package size while still capturing sharp, high-resolution images, making the camera suitable for use in small devices.
Abstract:
A camera including a spherically curved photosensor and a lens system. Effective focal length f of the lens system is within about 20% of the radius of curvature of the photosensor. An image is formed by the lens system at a spherically curved image plane that substantially matches the concave surface of the photosensor. The camera is diffraction-limited with small spot size, allowing small pixels to be used in the photosensor. F/number may be 1.8 or less. The spherically curved image plane formed by the lens system at the photosensor follows f*θ image height law. Chief rays of the lens system are substantially normal to the concave surface of the photosensor. Total axial length of the camera may be 2.0 mm or less. The camera may be implemented in a small package size while still capturing sharp, high-resolution images, making the camera suitable for use in small devices.