Abstract:
Aspects of the subject technology relate to control circuitry for displays. A display control circuitry includes a plurality of amplifiers to drive gamma signals for a pixel array having a plurality of pixels of a display and a segmented resistor string coupled to the plurality of amplifiers. The resistor string includes a plurality of resistor segments with a resistor segment being designed with a modified resistance to modify display performance parameters including at least one of a settling time of an associated gamma signal, a power supply rejection ratio (PSRR) of an amplifier of the plurality of amplifiers, or an output voltage offset of an amplifier of the plurality of amplifiers.
Abstract:
This application sets forth systems, methods, and apparatus for improving charge settling times for lines and pixels of a display panel. The charge settling times are improved by providing an over drive signal and a bias current to a line and/or pixel of the display panel based a comparison of content data to be output by the display panel. In this way, by initially charging the line and/or pixel with the over drive signal, the line and/or pixel can be fully charged more quickly in display panels that operate at higher refresh rates.
Abstract:
Methods and systems for compensating for VCOM variations include determining a voltage change in pixels between frames to be displayed on an electronic display. Based on the determined voltage change, VCOM variation is calculated based on coupling the VCOM to one or more data lines of the electronic display. VCOM compensation is determined and applied to offset for the VCOM variation. Using the VCOM offset, subsequent pixel content for the one or more pixels is written using the compensated VCOM.
Abstract:
The disclosure relates to systems and methods for reducing VCOM settling periods. A number of pixels is sub-divided into a plurality of regions. The pixels are configured to transmit light. A common voltage (VCOM) driving circuit is configured to drive a common electrode of the pixels. Moreover, each of a number of VCOM driving circuits includes a variable resistor configured to be driven to a resistance level based at least in part on which region of the plurality of regions includes an active pixel within the region. Furthermore, a resistance level is set and based at least in part on where the active pixel is located.
Abstract:
Gate driver circuitry in a display may supply gate line signals to rows of pixels on gate lines. Data line driver circuitry may supply data line signals to columns of pixels on data lines. The gate driver circuitry may have registers that are coupled to form a shift register that supplies the gate line signals to the gate lines. To compensate for data line signal propagation delays, the registers of the shift register may be clocked with increasingly delayed clocks as a function of increasing distance away from the display driver circuitry. To compensate for gate line signal propagation delays, the data line driver circuitry may impose increasing delays on the data line signals carried on the data lines as a function of increasing distance of the data lines away from the gate driver circuitry.
Abstract:
The disclosure describes procedures for dynamically employing a variable refresh rate at an LCD display of a consumer electronic device, such as a laptop computer, a tablet computer, a mobile phone, or a music player device. In some configurations, the consumer electronic device can include a host system portion, having one or more processors and a display system portion, having a timing controller, a buffer circuit, a display driver, and a display panel. The display system can receive image data and image control data from a GPU of the host system, evaluate the received image control data to determine a reduced refresh rate (RRR) for employing at the display panel, and then transition to the RRR, whenever practicable, to conserve power. In some scenarios, the transition to the RRR can be a transition from a LRR of 50 hertz or above to a RRR of 40 hertz or below.
Abstract:
An electronic device may include a display panel having display pixels and pixel drive circuitry that drives the display pixels based on a set of analog voltages according to display image data. Additionally, the electronic device may include a gamma generator to generate the set of analog voltages and voltage regulating circuitry that adjusts a supply voltage to a portion of the gamma generator based on a brightness setting of the display panel.
Abstract:
Aspects of the subject technology relate to control circuitry for displays. A display control circuitry includes a plurality of amplifiers to drive gamma signals for a pixel array having a plurality of pixels of a display and a segmented resistor string coupled to the plurality of amplifiers. The resistor string includes a plurality of resistor segments with a resistor segment being designed with a modified resistance to modify display performance parameters including at least one of a settling time of an associated gamma signal, a power supply rejection ratio (PSRR) of an amplifier of the plurality of amplifiers, or an output voltage offset of an amplifier of the plurality of amplifiers.
Abstract:
A system includes processing circuitry configured to determine a plurality of line-specific common voltage (Vcom) values for a plurality of common electrodes of an electronic display. Each of the plurality of line-specific Vcom values is associated with a line of pixels of a plurality of lines of pixels of the electronic display. Additionally, the processing circuitry is configured to cause the plurality of line-specific Vcom values to be provided to the plurality of lines of pixels.
Abstract:
Methods and systems for compensating for VCOM variations include determining a voltage change in pixels between frames to be displayed on an electronic display. Based on the determined voltage change, VCOM variation is calculated based on coupling the VCOM to one or more data lines of the electronic display. VCOM compensation is determined and applied to offset for the VCOM variation. Using the VCOM offset, subsequent pixel content for the one or more pixels is written using the compensated VCOM.