Abstract:
Systems and methods are provided for delivering both PMP communications, for example standard cellular communications via a base station, and also delivering P2P communications, for example, communications between two mobile stations, using the same spectral resources for both types of communication.
Abstract:
Methods and systems are provided for allocating resources including VoIP (voice over Internet Protocol) and Non-VoIP resources. In some embodiments, multiplexing schemes are provided for use with OFDMA (orthogonal frequency division multiplexing access) systems, for example for use in transmitting VoIP traffic. In some embodiments, various HARQ (Hybrid Automatic request) techniques are provided for use with OFDMA systems. In various embodiments, there are provided methods and systems for dealing with issues such as Handling non-full rate vocoder frames, VoIP packet jitter handling, VoIP capacity increasing schemes, persistent and non-persistent assignment of resources in OFDMA systems.
Abstract:
Systems and methods are provided for delivering both PMP communications, for example standard cellular communications via a base station, and also delivering P2P communications, for example, communications between two mobile stations, using the same spectral resources for both types of communication.
Abstract:
A method and system for achieving a link budget improvement in a diverse OFDM radio system by addressing the timing misalignment issue that can occur due to the differences in propagation time in signals between mobile stations and Radio Access Nodes. Timing misalignment is shared or split between the primary path to a primary Radio Access Node and a diverse path to a diverse Radio Access Node. The relative timing offsets between mobile stations are adjusted, the mobile stations are grouped into zones using a variety of different grouping techniques, and the transmission for each mobile station is scheduled, using one or more of a variety of scheduling techniques.
Abstract:
To schedule uplink transmission time slots for a collection of mobile communication devices, a set of base station target interference patterns is associated with base stations. A time slot target interference pattern is assigned for each time slot and it repeats after several time slots. The time slot target interference pattern in a given time slot specifies the interference allowed by each time slot to a given base station by any single mobile. A priority index may be determined for each time slot for each mobile associated with the particular base station. The priority index may be based, in part, on a determined correlation between the time-slot target interference patterns and a potential interference profile of a mobile to which a time slot is to be allocated. A mobile's throughput requirement, the throughput already received over a specified past duration, the system fairness requirement, as well as the amount of data available for transmission are also used for evaluating the priority index.
Abstract:
A method and system for achieving a link budget improvement in a diverse OFDM radio system by addressing the timing misalignment issue that can occur due to the differences in propagation time in signals between mobile stations and Radio Access Nodes. Timing misalignment is shared or split between the primary path to a primary Radio Access Node and a diverse path to a diverse Radio Access Node. The relative timing offsets between mobile stations are adjusted, the mobile stations are grouped into zones using a variety of different grouping techniques, and the transmission for each mobile station is scheduled, using one or more of a variety of scheduling techniques.
Abstract:
Systems and methods are provided for delivering both PMP communications, for example standard cellular communications via a base station, and also delivering P2P communications, for example, communications between two mobile stations, using the same spectral resources for both types of communication.
Abstract:
Systems and methods are provided for delivering both PMP communications, for example standard cellular communications via a base station, and also delivering P2P communications, for example, communications between two mobile stations, using the same spectral resources for both types of communication.
Abstract:
A method and system for achieving a link budget improvement in a diverse OFDM radio system by addressing the timing misalignment issue that can occur due to the differences in propagation time in signals between mobile stations and Radio Access Nodes. Timing misalignment is shared or split between the primary path to a primary Radio Access Node and a diverse path to a diverse Radio Access Node. The relative timing offsets between mobile stations are adjusted, the mobile stations are grouped into zones using a variety of different grouping techniques, and the transmission for each mobile station is scheduled, using one or more of a variety of scheduling techniques.
Abstract:
To schedule uplink transmission time slots for a collection of mobile communication devices, a set of base station target interference patterns is associated with base stations. A time slot target interference pattern is assigned for each time slot and it repeats after several time slots. The time slot target interference pattern in a given time slot specifies the interference allowed by each time slot to a given base station by any single mobile. A priority index may be determined for each time slot for each mobile associated with the particular base station. The priority index may be based, in part, on a determined correlation between the time-slot target interference patterns and a potential interference profile of a mobile to which a time slot is to be allocated. A mobile's throughput requirement, the throughput already received over a specified past duration, the system fairness requirement, as well as the amount of data available for transmission are also used for evaluating the priority index.