Abstract:
An audio speaker having a speaker housing surrounding a back volume that is divided into a rear cavity behind a speaker driver and an adsorption cavity separated from the rear cavity by a permeable partition, is disclosed. More particularly, the adsorption cavity may be defined between the speaker housing and the permeable partition, and may be directly filled with adsorptive particles to adsorb gas during sound generation. The permeable partition may allow the gas to flow between the rear cavity and the adsorption cavity, and may retain the adsorptive particles within the adsorption cavity. Other embodiments are also described and claimed.
Abstract:
An earphone comprising an earphone housing having a wall comprising (1) a front side that joins (2) an end portion in which a primary sound output opening is formed, which joins (3) a face portion in which a secondary output opening is formed, which joins (4) a back side which joins the front side and encloses a driver, wherein the primary output opening is dimensioned to output sound generated by a diaphragm of the driver contained within the earphone housing into the ear and the secondary output opening is dimensioned to vent the ear to a surrounding environment, and wherein the primary output opening and the secondary output opening face different directions.
Abstract:
Ultrasonic ranging for mobile devices is disclosed. A mobile device using ultrasonic ranging can include an ultrasound transmitter capable of emitting an ultrasound signal for detection by a proximate device and an ultrasound receiver capable of receiving an ultrasound signal from the proximate device. The mobile device can then use a time lapse associated with one or both of these ultrasound signals to find a range to the proximate device.
Abstract:
An audio speaker having a speaker housing surrounding a back volume that is divided into a rear cavity behind a speaker driver and an adsorption cavity separated from the rear cavity by a permeable partition, is disclosed. More particularly, the adsorption cavity may be defined between the speaker housing and the permeable partition, and may be directly filled with adsorptive particles to adsorb gas during sound generation. The permeable partition may allow the gas to flow between the rear cavity and the adsorption cavity, and may retain the adsorptive particles within the adsorption cavity. Other embodiments are also described and claimed.
Abstract:
An audio speaker having a suspension system including a surround to support a diaphragm within a frame and to reduce non-pistonic motion of the diaphragm at several resonant frequencies is disclosed. More particularly, embodiments of the surround include a film that undulates in a peripheral direction around the diaphragm and includes several undulations above and below a radial gap between the diaphragm and the frame. Other embodiments are also described and claimed.
Abstract:
A micro speaker assembly including a micro speaker having a top plate, a bottom plate parallel to the top plate, a magnet assembly coupled to one of the top plate or the bottom plate, a compliant member positioned between the magnet assembly and the top plate or the bottom plate, the compliant member operable to be displaced in response to an acoustic input, and a voice coil coupled to the compliant member. The assembly further including an optical sensor coupled to the micro speaker, the optical sensor having a light emitter and a light detector, the light emitter and the light detector being fixedly coupled to the top plate or the bottom plate, and the optical sensor being operable to produce a displacement signal corresponding to a displacement of the compliant member and a temperature signal corresponding to a temperature of the magnet assembly.
Abstract:
A portable electronic device including an enclosure having an enclosure wall that forms an interior chamber. A speaker module is positioned within the interior chamber and includes a speaker and a module wall forming a back volume chamber of the speaker. The back volume chamber includes an acoustic vent port formed through the module wall to acoustically couple the back volume chamber to the interior chamber. The device further including an electromechanical valve for regulating the acoustic coupling of the back volume chamber to the interior chamber. The electromechanical valve is operable to transition between an open configuration in which the acoustic vent port is open to the interior chamber and a closed configuration in which the acoustic vent port is closed off from the interior chamber.
Abstract:
An earphone comprising an earphone housing having a body portion, the body portion having an acoustic output opening to output sound from a driver positioned therein into an ear of a user. An acoustic tuning member is positioned within the body portion. The acoustic tuning member defines a back volume chamber of the driver and includes an acoustic output port for outputting sound from the back volume chamber of the driver to improve an acoustic performance of the earphone.
Abstract:
A common plate is formed in a moveable element of a device, the device having an actuator coupled to drive the moveable element. A first plate and the common plate together form a first capacitance, while a second plate and the common plate together form a second capacitance, both of which varies as a function of displacement of the moveable element. A measurement circuit has an input coupled to the first plate, while an excitation voltage source has an output coupled to the second plate. A guard voltage source has an output coupled to a conductive portion of the device. Other embodiments are also described and claimed.
Abstract:
A audio speaker includes two parallel magnetically permeable plates and a diaphragm movably supported parallel to and approximately equidistant from the plates by a surround. A magnet assembly is coupled to the two magnetically permeable plates and passes through an opening in the diaphragm. The magnet assembly includes two magnets that are coupled with two like poles adjacent the diaphragm. A voice coil is coupled around the opening in the diaphragm to move the diaphragm when an electrical current flows in the voice coil. A suspension ring may surround a portion of the magnet assembly with a first end sealed to the diaphragm and an opposing second end sealed to one of the two plates to separate a back volume from a front volume. Some embodiments include several magnetic assemblies passing through the diaphragm with a voice coil and a suspension ring for each magnet assembly.