Abstract:
Methods and devices are provided for allowing a mobile device (e.g., a key fob or a consumer electronic device, such as a mobile phone, watch, or other wearable device) to interact with a vehicle such that a location of the mobile device can be determined by the vehicle, thereby enabling certain functionality of the vehicle. A device may include both RF antenna(s) and magnetic antenna(s) for determining a location of a mobile device relative to the vehicle. Such a hybrid approach can provide various advantages. Existing magnetic coils on a mobile device (e.g., for charging or communication) may be re-used for distance measurements that are supplemented by the RF measurements. Any device antenna may provide measurements to a machine learning model that determines a region in which the mobile device resides, based on training measurements in the regions.
Abstract:
Position, navigation and/or timing (PNT) solutions may be provided with levels of precision that have previously and conventionally been associated with carrier phase differential GPS (CDGPS) techniques that employ a fixed terrestrial reference station or with GPS PPP techniques that employ fixed terrestrial stations and corrections distribution networks of generally limited terrestrial coverage. Using techniques described herein, high-precision PNT solutions may be provided without resort to a generally proximate, terrestrial ground station having a fixed and precisely known position. Instead, techniques described herein utilize a carrier phase model and measurements from plural satellites (typically 4 or more) wherein at least one is a low earth orbiting (LEO) satellite. For an Iridium LEO solution, particular techniques are described that allow extraction of an Iridium carrier phase observables, notwithstanding TDMA gaps and random phase rotations and biases inherent in the transmitted signals.
Abstract:
Position, navigation and/or timing (PNT) solutions may be provided with levels of precision that have previously and conventionally been associated with carrier phase differential GPS (CDGPS) techniques that employ a fixed terrestrial reference station or with GPS PPP techniques that employ fixed terrestrial stations and corrections distribution networks of generally limited terrestrial coverage. Using techniques described herein, high-precision PNT solutions may be provided without resort to a generally proximate, terrestrial ground station having a fixed and precisely known position. Instead, techniques described herein utilize a carrier phase model and measurements from plural satellites (typically 4 or more) wherein at least one is a low earth orbiting (LEO) satellite. For an Iridium LEO solution, particular techniques are described that allow extraction of an Iridium carrier phase observables, notwithstanding TDMA gaps and random phase rotations and biases inherent in the transmitted signals.
Abstract:
Methods and devices are provided for allowing a mobile device (e.g., a key fob or a consumer electronic device, such as a mobile phone, watch, or other wearable device) to interact with a vehicle such that a location of the mobile device can be determined by the vehicle, thereby enabling certain functionality of the vehicle. A device may include both RF antenna(s) and magnetic antenna(s) for determining a location of a mobile device relative to the vehicle. Such a hybrid approach can provide various advantages. Existing magnetic coils on a mobile device (e.g., for charging or communication) may be re-used for distance measurements that are supplemented by the RF measurements. Any device antenna may provide measurements to a machine learning model that determines a region in which the mobile device resides, based on training measurements in the regions.
Abstract:
User equipment receives a GNSS signal that includes a GNSS signal from a satellite. The user equipment also receives a first data input from a motion sensor of the user equipment that is indicative of a motion of the user equipment, receives a second data input from the temperature sensor of the user equipment that is indicative of a temperature of the user equipment, and performs a coherent operation based on the pilot channel of the GNSS signal over a coherent period of time based on the first data input and the second data input to generate a resulting signal. The user equipment performs a non-coherent operation based on the resulting signal to amplify the resulting signal, and outputs a position of the user equipment based on the resulting signal.
Abstract:
Systems, methods, devices and subassemblies for creating and delivering a GNSS augmentation service include one or more reference stations for receiving signals transmitted by navigation beacons and an augmentation server coupled to the reference stations. At least one of the reference stations is able to receive at least one of the signals from a low earth orbit satellite. Each of the reference stations determines first navigation observables based on the received signals and transmit information associated with the first navigation observables to the augmentation server. The augmentation server is configured to determine and distribute augmentation information to a receiver. The augmentation information is based on the received information associated with the first navigation observables, locations of the reference stations, and computational models. The distributed augmentation information is usable by the receiver to determine a high-precision position, velocity, and time solution for the receiver based on second navigation observables associated with the receiver.
Abstract:
This disclosure is directed to shared antenna tuning. An electronic device may receive a global navigation satellite system (GNSS) tune request to tune a shared antenna to a GNSS signal frequency. The electronic device may then tune the antenna to the GNSS signal frequency and enable a GNSS receiver. The electronic device may also receive a cellular tune request to tune the antenna to a cellular frequency. The electronic device may tune the antenna to a cellular frequency and may deactivate the GNSS receiver or blank the GNSS receiver. In some embodiments, the electronic device may also communicate with a Low Earth Orbit (LEO) satellite. During LEO satellite communication, the electronic device may transmit a signal to blank a GNSS L1 receiver to avoid signal interference with the LEO satellite communication, and activate a GNSS L5 receiver to receive GNSS signals.
Abstract:
Methods and devices are provided for allowing a mobile device (e.g., a key fob or a consumer electronic device, such as a mobile phone, watch, or other wearable device) to interact with a vehicle such that a location of the mobile device can be determined by the vehicle, thereby enabling certain functionality of the vehicle. A device may include both RF antenna(s) and magnetic antenna(s) for determining a location of a mobile device relative to the vehicle. Such a hybrid approach can provide various advantages. Existing magnetic coils on a mobile device (e.g., for charging or communication) may be re-used for distance measurements that are supplemented by the RF measurements. Any device antenna may provide measurements to a machine learning model that determines a region in which the mobile device resides, based on training measurements in the regions.
Abstract:
Methods and devices are provided for allowing a mobile device (e.g., a key fob or a consumer electronic device, such as a mobile phone, watch, or other wearable device) to interact with a vehicle such that a location of the mobile device can be determined by the vehicle, thereby enabling certain functionality of the vehicle. A device may include both RF antenna(s) and magnetic antenna(s) for determining a location of a mobile device relative to the vehicle. Such a hybrid approach can provide various advantages. Existing magnetic coils on a mobile device (e.g., for charging or communication) may be re-used for distance measurements that are supplemented by the RF measurements. Any device antenna may provide measurements to a machine learning model that determines a region in which the mobile device resides, based on training measurements in the regions.
Abstract:
Methods and devices are provided for allowing a mobile device (e.g., a key fob or a consumer electronic device, such as a mobile phone, watch, or other wearable device) to interact with a vehicle such that a location of the mobile device can be determined by the vehicle, thereby enabling certain functionality of the vehicle. A device may include both RF antenna(s) and magnetic antenna(s) for determining a location of a mobile device relative to the vehicle. Such a hybrid approach can provide various advantages. Existing magnetic coils on a mobile device (e.g., for charging or communication) may be re-used for distance measurements that are supplemented by the RF measurements. Any device antenna may provide measurements to a machine learning model that determines a region in which the mobile device resides, based on training measurements in the regions.